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EBW emission measurements provide guidance for
future ST heating & current drive systems

• Next generation STs require non-inductive plasma startup
and off-axis current drive (CD) to sustain β > 20% plasmas
– Low magnetic field and high ne prevent propagation of low EC

harmonics used in traditional tokamaks

• Feasibility of EBW heating & CD in the ST critically
dependent on coupling to EBWs in H-mode
– EBW coupling studied by measuring thermal EBW emission (EBE)

• Studied efficiency of B-X-O mode conversion in H-mode &
compared to theoretical predictions
– Investigate effects of edge conditioning on EBW coupling
– Experimentally map B-X-O transmission efficiency, ηB-X-O
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EBW research objective to assess ability of EBWCD to
generate off-axis stabilizing current in ST-CTF

llii=0.5
qo~2

llii=0.25
qo~4

Add 1 MA
EBWCD

Pnb=30 MW
Pebw=10 MW

Pnb=30 MW

Y-K. M. Y-K. M. PengPeng, et al., PPCF, , et al., PPCF, 4747 B263 (2005) B263 (2005)

• Modeling shows adding
1 MA of off-axis EBWCD to
ST-CTF plasma significantly
increases stability:
– βn increases from 4.1 to 6.1
– βt increases from 19% to 45%

• EBW also candidate for NTM
suppression via j(R) control

• Need efficient coupling of RF
power to EBWs
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Assess oblique O-X-B
coupling by measuring
B-X-O emission
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Propagation of EC waves prohibited in the ST

• EC waves used in tokamaks for current drive (CD), heating and
Te(R) measurements

• NSTX has low magnetic fields
and high ne, cutting off up to
first 6 EC harmonics
– EBWs are strongly

absorbed/emitted from
EC harmonics

• EBWs cannot propagate in
vacuum outside upper hybrid
resonance (UHR) layer

, X

, X

, O

EBW emission data can be used to provide coupling efficiency and
polarization information for heating and current drive system
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EBW coupling to electromagnetic waves

• EBW emitted at EC harmonic
converts to X-mode at UHR and
then O-mode

• Emission elliptically polarized due
to oblique view of plasma

• ηB-X-O less sensitive to Ln than ηB-X

pe

O-mode

Calculated ηB-X-O

90% 
Ln~3 cmf=16 GHz

• B-X-O transmission angle depends on
field and pitch (~30-45º) at MC layer

• Ln at MC layer determines width of
window

• Measured Trad = local Te provided
ηB-X-O ~ 100%

Upper Hybrid
Resonance Layer



5

B-X-O emission provides method to investigate
feasibility of O-X-B injection

• For NSTX plasmas,
τ~3000 near EC harmonics
– EBW emission is at

blackbody levels
– Radiometer can be absolutely

calibrated to provide Te(R,t)

• Experiments focused on optimizing
ηB-X-O and comparing to theoretical
predictions
– Physics of B-X-O emission and O-X-B

injection are symmetric
– Finding optimal conditions of B-X-O

emission economically provides
information on optimizing O-X-B
injection
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Remotely steered EBE diagnostic allows spatial
mapping of emission window

Beam waist

Antenna spatial
scan region

Ln~3 cm

Ln~7 cm

• ±10º scan in poloidal and toroidal
directions between discharges

• Acceptance angle:
− 8-18 GHz antenna ~ 22º
− 18-40 GHz antenna ~14º

S.J. Diem, et al, Rev. Sci. Instrum. 77 (2006)
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Linear actuators allow ± 10° poloidal and
toroidal steering

• Two drives provide motion
in poloidal & toroidal direction

• Spherical housing provides
steering

• Antennas located outside
vacuum vessel

• Quad-ridged antennas measure two orthogonally polarized
radiation components
– Dividing the components yields polarization
– Adding components yields total power

• Remote steering allows optimization of B-X-O transmission
efficiency
– Needed to explore the feasibility for EBW based heating & CD

Mounting system designed by J. Caughman (ORNL)

18-40 GHz EBW Antenna
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EBE simulation code includes EBE antenna pattern
and 3-D plasma equilibrium

• Code inputs:
– Magnetic equilibria (EFIT)
– Te & ne profiles from Thomson scattering
– Antenna pattern measurements

• Beam is modeled by a symmetric distribution of 41 rays

• Mode conversion (MC) efficiency is determined by the full
wave solution for a cold plasma slab

• 3D ray-tracing code describes EBW propagation after MC

• Trad determined by simultaneously solving ray equations with
the radiative transfer equation for each ray

J. Urban & J. Preinhaelter, Journal of Plasma Physics, 72 (2006)
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Large Trad fluctuation are predominately due to
changes in B-X-O transmission efficiency

• Trad fluctuates  > 30% for all
frequencies

• Edge reflectometer used to
measure ne profile
– Measured Ln fluctuates from 1 cm

to 6 cm

• Theoretical ηB-X-O computed
using measured Ln values
– Varies as ~

• Fluctuation levels of Trad (30%)
and ηB-X-O (20%) comparable

! 

e
L
n

Maximum Trad used to calculate
measured ηB-X-O

η
B-X-O
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Initial H-mode EBE measurements exhibited decay in
measured Trad during H-mode phase

• H-mode regime focus of ST
research
– Need efficiency EBW coupling

in H-mode

• Emission decays after L-H
transition
– Observed for fce, 2fce and 3fce

emission
– Emission location remains

constant during discharge

• Leads to ηB-X-O ~ 0% during
H-mode
– Low EBE levels do not

support EBW heating & CD

η
B-X-O
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Explanation for reduced EBE: Collisional damping

• After L-H transition, the MC layer
moved outside last closed flux
surface (LCFS)
– Te at MC layer reduced from 25 eV to

10 eV, increasing collisionality

• Simulations show collisional
damping becomes significant for
υei/ω > 10-4

– Typically occurs for Te < 20 eV near
MC layer in NSTX

• Only the e-i collisions contribute
to EBW collisional damping
– e-e collisional effects neglected due

to momentum conversion
– e-neutral effects neglected because

neutral density is less than 0.05ne

Te at MC layer
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Introducing EBW collisional damping to simulations
reproduces observed EBE collapse at L-H transition

• MC layer moves outside
LCFS after L-H transition
– Te < 20 eV outside LCFS

• Simulations with collisional
damping predict Trad decay
during H-mode
– CHERS measurement 5 cm

inboard from UHR yields
Zeff = 2

– Simulations with Zeff = 3,4
have closer agreement with
measured Trad
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EBE simulations indicate increase in edge υei results in
significant loss in ray intensity

• Relative collision frequency
increases after L-H transition:
– Peak υei/ω increases from

5x10-5 to 1.2x10-4

• Damped EBW power
increases from 20-40% in the
L-mode phase to 70-90%
during H-mode

   Need method to reduce
collisionality near UHR
layer      Li conditioning

13

High emission
Low emission
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LIThium EvaporatoR (LITER) provides edge
conditioning tool for NSTX

• B-X-O coupling depends on Ln and Te

– Li conditioning   Te &   ne near MC

• Reduction in edge ne moves MC
layer to LCFS where Te ~ 20 eV

Plasma Scrape-off
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H-mode ηB-X-O increased with Li edge conditioning

• Measured Trad increased from
~ 50 eV to ~ 400 eV
– 18 GHz emission from near

plasma axis

• ηB-X-O increased with Li
conditioning:
– From 10%      60% for fce=18 GHz
– From 20%      50% for 2fce=28 GHz

• Control of edge conditions
provides good coupling to EBW

Increased B-X-O coupling supports
EBW heating & CD possible in future
ST devices

15
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EBE simulations show reduction in edge collisionality
with increased Li evaporation

• Collisional effects dominate
without edge conditioning and
reduce emission
– υei decreased by factor of 4

• Without edge conditioning,
70% of EBW power lost
through collisional damping

• Simulations suggest ray
intensity increases from 30%
to > 80% near MC with Li

0 mg/min
19 mg/min

t=0.3 s
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Better Trad agreement with EBE simulation in
Li conditioned plasma

    Trad (measured)
Trad (sim., no collisions)
Trad (sim., with collisions)

• For highest Li evaporation
rate, 19 mg/min:
– Measured Trad~0.4 keV
– Simulated Trad~0.6 keV

• For 0 mg/min:
– Measured Trad~0.1 keV
– Simulated Trad ~0.4 keV

Control of edge conditions
allows for good coupling to EBW
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Angle of maximum B-X-O transmission consistent
with theory in H-mode plasmas

• Repeated target plasma,
(Ip =0.9 MA, Te(0)~1keV) with
Li conditioning

• Maximum measured
transmission efficiencies:
– 62±15% for fce=18 GHz near

axis emission
– 49±15% for 2fce=28 GHz near

axis emission

• Comparable to the simulated
ηB-X-O values
– 90±10% for fce = 18 GHz
– 70±10% for 2fce = 28 GHz
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Good agreement between measured and simulated
Trad in H-mode

 Trad (measured)
Trad (sim., no collisions)
Trad (sim., with collisions)

• Simulated & measured Trad
– 0.6 keV for fce=18 GHz
– 0.4 keV for 2fce=28 GHz

• Low EBW collisional damping
observed during H-mode scan

• Simulated and measured
optimal pointing angle agree
within 3°

31

fce=18 GHz

2fce=28 GHz

19
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Efficient EBW coupling demonstrated in NSTX
H-mode - essential prerequisite for EBWCD in ST-CTF

• Early H-mode EBE measurements exhibited rapid decay in
emission level after L-H transition
– Modeling revealed very low EBE explained by collisional damping of the

EBW prior to mode conversion

• First experimental observation of EBW collisional damping
– Lithium edge conditioning used to reduce edge collisionality
– ηB-X-O increased from 10% to 60% for fundamental emission at 18 GHz;

20% to 50% for second harmonic emission at 28GHz

• B-X-O transmission efficiency mapped in H-mode
– 50-60% maximum transmission for fce=18 GHz & 2fce=28 GHz in H-mode
– Measured, simulated and theoretical optimum angles agree within 5°


