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Small non-axisymmetric
 

(3D) perturbations can greatly 
change tokamak

 
plasma performance

• Degradations of performance :
– Tokamaks

 

can 
• Never be built with required accuracy

 
(A perturbation δBx/B ~ 10-4

 

can cause a disruption)
• Not have practical coils that can remove the error field

– Error field effects should be minimized 
• To avoid Locked Modes (LMs)
• To reduce rotation damping 

• Benefits for performance :
– Static control of Edge Localized Modes (ELMs) by control of 

particle transport in pedestal
– Dynamic control of Resistive Wall Modes (RWMs)
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Ideal Perturbed Equilibrium Code (IPEC) solves 3D perturbed 
tokamak

 
equilibria

 
with shielded islands

• IPEC calculates free-boundary 3D tokamak equilibria while preserving p(ψ) 
and q(ψ) profiles 

[IPEC is based on DCON and VACUUM stability codes] [Park et al, Phys. Plasmas (2007)]

1)

 

Islands are shielded when q(ψ) is preserved (Empirically true before locking)

 
→ Shielding currents at the rational surfaces give the total resonant field

2)

 

Magnetic surfaces are not destroyed, but deformed

 
→ Important variation of the field strength is along the perturbed field lines

Example :
n=1 from NSTX 
EF/RWM coils

2D Equilibrium Superposition
(equilibrium + n=1 vacuum) IPEC

Islands 
Flux surface destruction

No islands 
Flux surface deformation
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Ideal plasma response gives shielding, amplification, poloidal
 mode coupling of the field and deformed magnetic surfaces

• Ideal plasma response includes the effects of perturbed plasma currents
– Two sources of the 3D field

 

:
• External currents in the external coils : External field (Vacuum

 

superposition) δBext

• Perturbed currents in the plasma : Plasma field δBplas

• Total field δB = δBext

 

+ δBplas

– Ideal plasma response effects denote any difference from the vacuum 
superposition method -

 

shielding, amplification, poloidal

 

mode coupling of 
the field and deformed magnetic surfaces 

shielding amplification

q=2 surface

Near-cylindrical force-free example
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Resonant perturbation Near-resonant perturbation
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Plasma response is essential to explain paradoxical optimal 
toroidal

 
phase of NSTX correction field

• The optimal toroidal phase of EFC correction field was found in NSTX
– Optimal phase of EFC field should minimize the combined resonant

 

field 
(intrinsic error field + EFC correction field)

• External resonant field (δBext ) gave paradoxical result
• Total resonant field in IPEC (δB = δBext + δBplas) resolved the issue

External resonant field
by EFC correction

External resonant field
by EFC (varying phase) 

+ Intrinsic field

Total resonant field
by EFC (varying phase)

+ Intrinsic field
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Plasma response is essential to explain paradoxical DIII-D 
locking data

• The detailed experiments in DIII-D did not show any correlation between the 
external resonant field and the locking density

– Approximately linear correlation must be seen as observed in many 
experiments (at least positive correlation expected in locking theory)

• Total resonant field in IPEC restored the linear correlation
[Park et al, Phys. Rev. Lett. (2007)]

• IPEC is valid in high β, up to the marginally stable limit

Low β

 

locking

High β

 

braking
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The external field to which plasma is most sensitive 
differs from external resonant field

• The most sensitive external field is the external field that maximizes the 
damage to the plasma (maximizes the total resonant field)

• It has a kink-ballooning type distribution
• It is similar over a wide range of plasma parameters  

The most sensitive external field 
at the plasma boundary

(δBext)b

 

(θ,φ)=A(θ)cos

 

φ

 

+B(θ)sin φ

For ITER three scenarios
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Variation of field strength along the magnetic field lines in 
IPEC is very different from vacuum superposition 

• Non-axisymmetric variation of field strength produces non-ambipolar transport 
of particles (NTV transport) and toroidal torque (magnetic braking) 

• Variation must be evaluated along the magnetic field lines
– Lagrangian

 

δB= δE

 

B+ξ·—B >

 

Eulerian

 

δE

 

B

 

>

 

Vacuum superposition δE

 

Bext

1)

 

Dominated by magnetic surface deformation
2)

 

Enchanced

 

by perturbed plasma currents

(1) (2)

ISOLVER 
NSTX 

Equilibrium 
+ EFC coil 

currents n=1 
600A

Low βN

 

=1.0
δB

 

>> δE

 

B

 

~ δE

 

Bext
High βN

 

=6.0
δB

 

~ δE

 

B

 

>> δE

 

Bext
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Neoclassical Toroidal
 

Viscosity (NTV) theory has been 
improved by a combined analytic treatment

Parameters
R0 =2m, fφ=10kHz,

ne =5x1019m-3, q=2.2, ε=0.3, 
Te =0.01~100keV,

Gaussian n=3 field (-10<m<20) 
with δB/B = 10-3

(corresponds to δBE

 

/B = 10-4)

ν/ε

 

< ωE ν/ε

 

> ωE

δB/B=10-3

δE

 

B/B=10-4

ν

 

_ν1/2

 

regime 1/ν

 

regime

General

• Generalized treatment for NTV transport describes dynamics of bouncing (ωb ) 
trapped particles subjected to magnetic, electric toroidal precessions (ωp = ωB 
+ ωE ) and collisions (ν) in a combined form

[See the supplementary slides on the right side for the analytic

 

treatment]

( )( ) ( ) 2

2 2
0

  and  
2 ( ) +

effNTV
damp NTV w

e b B E eff

vF F B / B
f R Mn n vϕ

ν δ
π ω ω ω

∝
− +

DIII-D, NSTXITER
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Generalized NTV theory with IPEC field is consistent with 
experimental magnetic braking in NSTX

• Important physics in NTV theory :
a)

 

Toroidal precession rates (ωp

 

), which 
are often faster than the collisional

 
rates (ν)

b)

 

Trapped particle bounce rates (ωb

 

), 
which can resonate with the 
precession (ωp

 

) 
c)

 

Variation of field strength along the 
perturbed magnetic field lines, which 
includes plasma response

-

 

Vacuum superposition model uses the 
field variation at fixed points in space

vacuum 1/ν

NSTX
n=3 rotation braking 

experiment

measurement

(1)

(2)

(3)

(4)

vacuum

 

ν_ν1/2

IPEC 
general

vacuum 
general

(1) (a), (b) and (c) are all ignored 
(2) (a) is included
(3) (a) and (b) are included
(4) (a), (b) and (c) are all included

[See Becoulet, TH/2-1Rb]
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Torque can change 
perturbed equilibria

 
and plasma response

• IPEC can be inconsistent when the torque becomes large
– IPEC solves —p=j¥B, but —p+—·Π=j¥B

 

is required for consistency
– A large NTV torque implies that —·Π

 

can modify the perturbed equilibrium
• Magnetic measurements can be used to determine if the currents associated to 

the toroidal torque is important in perturbed equilibria
• Maxwell equations imply

1
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 : Normalized perturbed energy in the plasma
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 : Inductance of the plasma boundarypL

External (applied) field

Total field including plasma response

Amplification and phase shift 
between the two fields in 

magnetic sensors give energy 
and torque
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Tensor pressure (Torque) effects are important in high β
 plasma above the marginally stable limit 

• Magnetic sensor measurements for NSTX n=1 rotating applied showed the 
inconsistency in high beta above the marginally stable limit

• —·Π

 

effect is negligible for most n>1 applications
• IPEC Extension including tensor pressure for perturbed equilibria is necessary 

to describe n=1 application to high beta plasma
– Important to optimize the feedback to suppress Resistive Wall Mode

[Park et al, Phys. Rev. Lett., submitted (2008)]

NSTX n=1 Resonant Field Amplification (RFA) experiments

Derived from 
magnetic sensors

Calculated by 
IPEC+NTV torque

* DIII-D high beta n=1 
case (s= - 0.3) in 

EX5-3Ra
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NTV transport can be a hidden variable in ELM suppression 
by Resonant Magnetic Perturbation (RMP)

Using kinetic profiles #127744.03150

ELM is suppressed

ELM is not suppressed

• Chirikov ~ 1 at ψN =0.85 still holds as a necessary (not a sufficient) condition 
with IPEC evaluation as Vacuum evaluation 

[See T. Evans EX4-1]

• NTV particle transport is clearly different when RMP suppressed ELM and not

Using kinetic profiles #127744.03150

ψN

 

~ 0.85
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RMP control of ELMs
 

in ITER can be optimized using IPEC 
field and NTV calculation

42kA

85kA

85kA

42kA

• Three requirements for optimization :
1)

 

Islands overlap for ψN

 

>0.85
2)

 

Minimize  ∑(dBmn

 

)2/ ∑(dBext
mn

 

)2
boundary

 

for ψN

 

<0.8
3)

 

Maximize ∑(dBmn

 

)2/ ∑(dBext
mn

 

)2
boundary

 

for ψN

 

>0.8

VAC02 Three-rows CoilsOptimized 
currents

One row of the midplane coils
Two rows of the off-midplane coils
Three rows of the coils
Theoretically best field

Islands overlap
n=4 RMP field In the ITER baseline inductive scenario
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One row of 
midplane

 

coils

RMP optimization can reduce core degradation using 
three-rows coils (VAC02) under consideration

Two rows of 
off-midplane

 

coils
All three rows 

of coils
Theoretical field

Approximately 
follow the 

theoretical field 
when optimized
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Summary

• Ideal Perturbed Equilibrium Code (IPEC) solves free-boundary 3D tokamak 
equilibria with the fixed p(ψ) and q(ψ) profiles

• Total resonant field including ideal plasma response explained paradoxical 
error field problem and locking data in NSTX and DIII-D

• Important variation of field strength is along the magnetic field lines

• Generalized NTV includes resonances among ωb , ωB , and ωE

• IPEC field with generalized NTV can resolve the inconsistency between theory 
and magnetic braking experiments

• The extension of IPEC to include tensor pressure is necessary above the ideal 
stability limit as seen in NSTX experiments

• IPEC and NTV theory can be used to optimize ITER RMP field, enhancing 
perturbations in the edge while reducing perturbations in the core 
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Back up
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RMP optimization can give greater benefit if coils have more 
degrees of freedom

One row of 
midplane

 

coils
Two rows of 

off-midplane

 

coils
All three rows 

of coils
Theoretical field

Follow better the 
theoretical field 
when optimized
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