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Outline and Primary Results

I. Gyrokinetic model for rotating plasmas

addressing both turbulence and neoclassical physics

II. Toroidal momentum transport from turbulence simulation experiments

• Observations of inward non-diffusive momentum flux

• Discovery of residual stress due to k‖ symmetry breaking induced by
quasi-stationary ZF shear

• Effect of zonal flow damping

III. Neoclassical momentum transport

• Off-diagonal momentum flux driven by ∇Ti

• Overall neoclassical contribution is small

IV. Residual turbulence with strong E × B flow shear

• It may lead to anomalous momentum flux, while driving ion heat flux
only on the order of neoclassical level

V. Global nonlinear ETG simulations of NSTX experiments

2



I. Simulation Model for Rotating Plasmas

• Gyrokinetic Tokamak Simulation (GTS) code: generalized gyrokinetic
simulation model; PIC approach

Turbulence fluctuation part δf :

Dδf

Dt
≡ ∂δf

∂t
+ (v‖b̂ + �vE0 + �vE + �vd) · ∇δf − b̂∗ · ∇(μB +

e

mi
Φ0 +

e

mi
φ̄)

∂δf

∂v‖

= − �vE · ∇f0 + b̂∗ · ∇(
e

mi
φ̄)

∂f0

∂v‖
+ Cl

i(δf).

Neoclassical equilibrium f0:

∂f0

∂t
+ (v‖b̂ + �vE0 + �vd) · ∇f0 − b̂∗ · ∇(μB +

e

mi
Φ0)

∂f0

∂v‖
= Ci(f0, f0).

Lowest order equilibrium solution for rotating plasma:

f0 = fSM = n(r, θ)(
mi

2πTi
)3/2e

−mi
Ti

[ 12 (v‖−Ui)
2+μB]

parallel flow: Ui = Iωt/B, density: n(r, θ) = N(r)e
miU2

i
2Ti

− eΦ̃0
Ti
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Simulation model for rotating plasmas

Dδf

Dt
==

{
−

[
m

Ti

(
1
2
(v‖ − Ui)2 + μB

)
− 3

2

]
�vE · ∇ lnT − �vE · ∇ lnn(r, θ)

−m(v‖ − Ui)
Ti

�vE · ∇Ui(r, θ) +
mUi

Tiv‖
�vE · μ∇B − 1

Ti
(v‖b̂ + �vd) · ∇(eΦ̄)(1 − Ui

v‖
)
}

f0.

{〈n(r, θ)〉, T (r), Φ0(r), and ωt(r)} =⇒ turbulence & transport

(energy, particle and momentum flux)

• Interfaced with MHD equilibrium codes (based on ESI interface by
Zakharov and White) and TRANSP data base
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Global gyrokinetic turbulence is characterized by
distinguishable dynamical phases

• from linear, to nonlinear transient, to a well developed turbulent state

5



Dynamics of gyrokinetic turbulence should not be
sensitive to numerical techniques

Two different ways to solve gyrokinetic Poisson equation in the code:

• Solver I. in simple geometry equations for δΦ and 〈Φ〉 can be decoupled(
1 +

Ti

Te

)
eδΦ
Ti

− eδ̃Φ
Ti

=
δn̄i − 〈δn̄i〉

n0
− δn

(1)
e − 〈δn(1)

e 〉
n0

,

1
V ′

r

d

dr

[
dΦ00

dr
V ′

r〈grr〉
]

=
1
V ′

r

d

dr

{
d

dr

[
Ti

e

(
〈δn̄i〉
n0

− 〈δn(1)
e 〉

n0

)]
V ′

r〈grr〉
}

−〈 1
ρ2

i

〉Ti

e

(
〈δn̄i〉
n0

− 〈δn(1)
e 〉

n0

)
,

using approximations:

i)
〈
Φ̃

〉
≈ 〈̃Φ〉 – not justified in general geometry!

ii) Pade approximation Γ0(b) ≡ I0(b)e−b ≈ 1/(1 + b)
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Dynamics of gyrokinetic turbulence should not be
sensitive to numerical techniques

• II. Generalized Poisson Solver to solve integral equation for total potential
Φ = δΦ + 〈Φ〉 (

1 +
Ti

Te

)
eΦ
Ti

− eΦ̃
Ti

− e〈Φ〉
Te

=
δn̄i

n0
− δn

(1)
e

n0
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Poisson solver for total potential
solver with turb. and ZF decoupled 

In simple geometry case (large aspect ratio and weak shaping), two highly
different solvers give almost the same results!
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Dynamics of gyrokinetic turbulence should not be
sensitive to numerical techniques
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80 particles / cell

20 particles / cell

• the nonlinear transient phase is rather robust and not artificial

• not sensitive to how we solve Poisson equation (in simple geometry case)

• not sensitive to how simulation grids are set up

• not sensitive to the numbers of simulation particles
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Global turbulence and fluxes are characterized by
spatio-temporal bursting with radially inward propagation

• coherent spatio-temporal bursting
shown in 〈δΦ2〉, qi, Γφ and zonal flows

• radial propagation likely non-diffusive

• underlying nonlinear physics ?: tur.
spreading, tur. and ZF interplay, change
of local plasma gradients ...
connection with the nature of turbulence
transport?
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II. Turbulent Momentum Transport: various features of
toroidal momentum flux and definitions

• Fluid

toroidal momentum: Lφ ≡ mnRuφ

toroidal momentum flux (radial):
Γφ ≡ 〈δLφδvr〉 ≈ mnR〈δuφδvr〉 + mRuφ〈δnδvr〉

• Kinetic
�Γφ ≡

∫
d3vmRvφ�vδEδf ≈ −mnχeff

φ R2∇ωφ

radial flux (in general geometry):

〈�Γφ · ρ̂〉 ≡ 〈
∫

d3vmRvφ�vδE · ∇ρ/|∇ρ|δf〉 ≡ −mnχeff
φ (ρ)〈R2|∇ρ|〉dωφ

dρ

• Characteristics of momentum transport: diffusion, pinch effects,
off-diagonal (residual stress), ...

Recently, there have been a number of theoretical studies to address
various mechanisms: symmetry-breaking, TEP, resonance, non-resonance,
... (Hahm, Diamond, Gurcan, Peeters, Coppi, ... )

and intensive experimental investigations ...
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Large inward toroidal angular momentum flux found in
post-saturation phase
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• Large inward toroidal mo-
mentum flux driven in post-
saturation phase

• It pumps toroidal momen-
tum from edge to core ⇒
Δu‖ ∼ 3% vth (a significant
fraction of rotation speed)

• global momentum conserva-
tion roughly maintained
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Simulation experiments of toroidal momentum transport
in various situations
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• smaller Γφ and
Δu‖/vth for
∇ωφ < 0 case

• Γφ in long-time steady state settles
down to a lower level in direction of mo-
mentum diffusion

• effective χφ/χi is on the order of unity,
in broad agreement with observations
in conventional tokamaks and theory
predictions for low-k fluctuation driven
transport [Mattor-Diamond, PF’88]

12



Large transient inward momentum flux may lead to core
rotation spin up – smaller ωφ and smaller ∇ωφ case
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• large inward transient momentum flux is
observed in the direction opposite to
momentum diffusion (outward for this case)
⇒ core rotation spins up
pinch? off-diagonal (residual stress)?
or ... ?

• however, long-time steady-state Γφ, smaller
but finite, returns to diffusive direction
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Large transient inward momentum flux found in various
situations – rigid rotation with ωφ 	= 0

0 500 1000
0

1

2

3
x 10

6

q i

0 500 1000

−20

−15

−10

−5

0

5
x 10

4

Γ φ

0 500 1000
0

1

2

3

Δ 
u //

time history (r/a=0.46)

• large inward flux remains in post-saturation phase – no rotation gradient
necessary

• Γφ in long-time steady-state is vanishing or small
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Large transient inward momentum flux observed in
various situations – rigid rotation with ωφ = 0
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• no rotation even necessary for the large transient inward flux!

→ existence of off-diagonal (residual stress) momentum flux

(this does NOT necessarily indicate that momentum pinch is unimportant
in general case)

• Γφ in long-time steady-state is vanishing or small – likely diffusive
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Large transient inward momentum flux observed in
various situations – rigid rotation with ωφ 	= 0 and mean

E × B shear flow
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w/o mean ExB flow

with mean ExB flow
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w/o mean ExB flow

with mean ExB flow

• transient inward flux slightly enhanced

• Γφ in long-time steady-state is vanishing
or small – likely diffusive

• symmetry-breaking effect due to E × B
shear flow [Gurcan, Diamond, Hahm,
Singh, PoP’07] does not make significant
difference in this particular case
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Underlying physics for ITG driven off-diagonal
momentum transport is identified
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• Self-generated
zonal flow is quasi-
stationary in global
ITG simulations

→ showing existence
of toroidal zonal flow

• Discovery of residual stress generation due to k‖ symmetry breaking
induced by self-generated quasi-stationary ZF shear – an universal
mechanism [along with mean E × B shear (Gurcan et al., ’07)]

〈k‖〉(r) ≡ 1
qR0

∑
(nq − m)δΦ2

mn∑
δΦ2

mn
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Effect of zonal flow damping on turbulence driven
momentum transport
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• Two competing effects of zonal flows on momentum transport: i) reduces
turbulence; ii) break up k‖ symmetry

• Primary effect of zonal flow damping is found to be though its effect on
turbulence saturation level:

increased ZF damping → increased turbulence intensity → increased Γφ

associated with residual stress
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Effect of zonal flow damping by collisions
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• very large ZF and GAM (1, 0) is found to develop in long term steady
state to reduce turbulence to very low level in collisionless case

• not clear yet about what causes ZF saturation in collisionless plasma;
collisionless zonal flow damping seems to be weak

• collision dissipation seems to be most critical damping mechanism in
determining ZF and GAM level, and then long term fluctuations and
associated transport in simulations
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Which and how particles contribute to momentum and
energy transport: resonance and non-resonance
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Which and how particles contribute to momentum and
energy transport: resonance and non-resonance
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Resonance condition: ω − ωdi(v2
‖) − ω∇B(μ) − k‖v‖ = 0
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III. Neoclassical momentum transport can be
non-diffusive; overall NC contribution is negligibly small
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• Simulations show inward non-diffusive momentum flux associated with
temperature gradient

• Simulations applied to NSTX and DIII-D discharges show that the NC
contribution to momentum transport is negligibly small due to the
absence of banana orbit enhancement

• Momentum transport is mostly anomalous, even when ion heat transport
is reduced to neoclassical level
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VI. Residual turbulence may account for puzzling
co-existence of neoclassical-level ion heat and anomalous

momentum transport
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• Neoclassically χφ/χi ∼ 0.01−0.1, and neo-
classical contribution to momentum trans-
port is negligibly small

• Existence of strong coupling between ion
momentum and heat transport for ITG tur-
bulence, χφ ∼ χi, is verified

• Finite residual turbulence is found to sur-
vive strong mean E × B shear flow in-
duced damping, and drive an insignificant
ion heat flux and a finite momentum flux
significantly higher than neoclassical level

• Equilibrium E × B flow shear is found to reduce turbulence driven
transport for energy more efficiently than for momentum
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Validation of GTS turbulence simulation of momentum
and energy transport against DIII-D measurements
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VI. Global nonlinear ETG simulations of NSTX discharge
support experimental observations of electron gyro-radius

scale fluctuations (with E. Mazzucato ...)
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Global nonlinear ETG simulations of NSTX discharge
support experimental observations of electron gyro-radius

scale fluctuations
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Summary

• A large inward flux of toroidal momentum is driven in the post-saturation
phase of ITG turbulence. It is rather robust and mostly off-diagonal,
which may lead to core rotation spin up (resulting in Δu‖ ∼ a few percent
of vth in the case of no momentum source at the edge)

• Underlying physics for the inward flux is related to the turbulence
generated quasi-stationary zonal flow shear which breaks k‖-symmetry
and generates residual stress

• The relatively low level momentum flux in the long-time steady state
appears to be approximately diffusive, with effective χφ/χi on the order of
unity, in broad agreement with experimental observations and theory
prediction for low-k fluctuations
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Summary

• A significant inward, non-diffusive neoclassical momentum flux is observed
associated with ion temperature gradient. However, the overall
neoclassical contribution to momentum transport is negligibly small.

• Residual turbulence found to survive the dissipation of a strong mean
E×B flow shear and drive anomalous momentum flux

• Equilibrium E × B flow shear reduces turbulence driven transport for
energy more efficiently than for momentum

=⇒ one possible explanation to the puzzle of co-existence of neoclassical-level
ion heat and anomalous momentum transport in experiments

• First global, nonlinear ETG simulation for experimental discharge has
been carried out for direct validation against high-k measurements of
electron gyro-radius scale fluctuations in NSTX
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