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Conclusions 

  Significant divertor peak heat flux reduction has been
 demonstrated in highly shaped high-performance H-mode
 plasmas in NSTX using divertor magnetic flux expansion and
 radiative divertor simultaneously with high core plasma
 performance 
•  Good synergy of high performance H-mode regime with partially

 detached divertor 

  Detachment characteristics in NSTX 
•  Steady-state PDD regime achieved only with additional gas

 injection into a high flux expansion divertor 
•  High divertor radiated power, neutral pressure, volume

 recombination rate measured 
•  PDD properties appear to be similar to those observed in tokamak 
•  SOL geometry limits radiated power and momentum losses to the

 separatrix region 
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Divertor heat flux mitigation is key for present
 and future fusion plasma devices  

  Radiative divertor  is envisioned for  
 present and future devices (e.g. ITER) as  
 the steady-state heat flux mitigation  
 solution  

•  Divertor qpeak < 10 MW/m2 

•  Large radiated power fractions  
 (frad = 0.50 - 0.80) 

•  Integration with pedestal and core 
•  Partially detached divertor (PDD) is the 

 most promising regime 

  Radiative divertor in NSTX 
•  Does radiative divertor work in a spherical torus (ST) with a compact

 high q|| divertor? What are the limitations? 
•  Experimental basis for radiative divertor optimization and projections to

 ST-CTF 

Peng et al, PPCF 47, B263 (2005) 
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SOL / divertor geometric properties are different
 in spherical tori and large aspect ratio tokamaks  

  D 
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Open geometry NSTX divertor enables flexibility 
 in plasma shaping 

  Plasma facing components  
•  ATJ and CFC tiles 
•  Carbon - erosion, sputtering  
•  Max Prad fraction limited by     

 carbon radiation efficiency 
•  Typical divertor tile temperature

 in 1 s pulses T < 500 C  
 (qpeak ≤ 10 MW/m2) 

  No active divertor pumping  
•  Experiments with lithium

 coatings for reduced recycling
 (see Kaita et al., EX/P4-9) 
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Multiple diagnostic measurements are analyzed
 to elucidate on radiative divertor physics in NSTX 

  Diagnostic set for divertor 
 studies: 

•  IR cameras 
•  Bolometers 
•  Neutral pressure gauges 
•  Tile Langmuir probes 
•  Dα, Dγ filtered CCD arrays 
•  UV-VIS spectrometer  

 (10 divertor chords) 

  Midplane Thomson scattering
 and CHERS systems 

  Divertor gas injector 
 Γgas = 20-200 Torr l / s 
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In low κ, δ configuration with rad. divertor, qpeak
 reduced albeit with confinement degradation 

  Peak heat flux in outer divertor (Maingi JNM 363-365, 196 (2007)): 
•  ITER-level qout< 10 MW/m2 
•  Scaling of qpeak: linear with Psol (PNBI), linear-monotonic with Ip  
•  Large qpeak asymmetry - 2-10; inner divertor always detached 

  Experiments using D2 injection (Soukhanovskii IAEA 2006): 
•  qpeak reduced by up to 60 % in transient PDD regime 
•  X-point MARFE degraded confinement within 2-3 x τE 
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High plasma performance and reduced qpk are
 attained in highly shaped plasmas 

  High performance H-mode  
 (Gates APS 2005, Maingi APS 2005,
 Menard IAEA 2006) 
•  κ = 2.2-2.3, δ = 0.65-0.75, drsep ~ 5-10 mm 
•  H89P ~ 2.0 
•  βt = 15 - 25 % 
•  fbs = 45 - 50 % 
•  longer pulses ~50 x τE 
•  smaller ELMs 

  Divertor in highly shaped plasmas 
•  High flux expansion, area expansion (qpeak ↓ ) 
•  Higher isothermal SOL volume (Prad  ↑) 
•  Lower Lp (neutral penetration ↑) 
•  Neutrals recycle toward separatrix 

Shot 120001


τcr (=µ0σnca2/6)


MSE


TRANSP
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Good core plasma performance and significant qpeak
 reduction with PDD obtained at high κ, δ 

  Experiments conducted in 0.8-1.0 MA 4-6 MW NBI discharges with
 κ=2.2-2.3, δ=0.6-0.75 (Soukhanovskii APS 2007) 

  Obtained partially detached divertor (PDD) outer strike point using
 divertor D2 injection, however, Prad due to intrinsic carbon and helium 

   qpeak reduced by 60 - 80 % in PDD phase  with min. confinement
 degradation 
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Radiative divertor conditions were optimized in
 1.0 MA and 1.2 MA 6 MW H-mode discharges 

  Criteria of optimization -  find
 gas injection rate to obtain
 PDD with minimal confinement
 degradation 

  q|| was higher in 1.2 MA
 discharges thus more gas 
 was needed to reduce qpk 

  After 0.250-0.270 ms peak heat
 flux reached low steady-state
 level 

  Optimal gas injection found
 (used 300 ms pulses) 

•  50-100 Torr l /s for 1.0 MA
 discharges 

•  110-160 Torr l /s for 1.2 MA
 discharges 
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High core and pedestal plasma performance
 during PDD is achieved in high κ, δ configuation 

  These experiments 
•  Ip = 1.0-1.2 MA 
•  PNBI = 6 MW 
•  ne=(0.7-0.8) x nG 
•  D2 injection in divertor 
•  q||=PSOL/(4πR(Bp/Btot)λq) =  

 50-80 MW/m2 

•  Carbon is main impurity 

  High core plasma performance
 during PDD phase 

•  Minimal effect on WMHD or pedestal 
•  Core Prad and nc decreased 
•  Small ELMs (ΔWMHD /WMHD< 1%)

 and mixed ELMs 
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Peak heat flux reduced by up to 60 % as a result
 of outer strike point partial detachment 

  λq changed from 5-10 cm to 10-15 cm 
  PDD zone 10-15 cm 
  No q reduction outside of PDD zone 
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Divertor heat flux reduction was attributed in part to 
divertor radiated power loss 

  Total PSOL = 4.5 - 5 MW 
  Qout.div.= 2-3 MW (reference discharge) 
  Qout.div.= 1-2 MW (PDD discharge) 

  Outer leg radiated power estimate: 
  V=0.1 m3 

  Total Prad=0.5 MW 
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Momentum loss was evidenced by divertor neutral
 pressure increase and particle flux decrease  

  Langmuir probe in PDD zone showed 
particle flux decrease during gas puff 

  Langmuir probe outside  of PDD zone 
showed particle flux increase during gas 
puff – as expected in high-recy. regime 

  Neutral pressure increased in outer div. 
region from 0.5 to 2-3 mTorr 

  Neutral pressure of 2-3 mTorr is required to 
explain plasma pressure drop of dp/dx = 
9-10 Pa/m 
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Carbon radiation and ion recombination rates
 increased in divertor detachment phase 

  Increase in recombination rate 
  D I Balmer spectra (8…11 - 2) indicate 

•  Te < 0.7-1.2 eV (from line intensity
 ratio according to Saha-Boltzman
 formula) 

•  ne ~ 2-6 x 1020 m-3 (from Stark
 broadening and MMM calculations) 

x 10 
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Six-zone 1D analytic SOL / divertor model
 captures essential features of detachment  

  Goswami PoP 8, 857 (2001) 
  Zone locations defined by

 temperature of process 
  Sources and sinks Q⊥,  S⊥,  

Γi-div, frad, Rrec, νi-n as input 
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Model predictions consistent with experiment
 within NSTX range of SOL parameters 

  NSTX SOL / divertor parameters 
•  Q⊥ = 0.5 - 20 MW m-3 (high) 
•  S⊥ = 0.01-3 x1023 s-1 m-3 
•  Lx = 5-10 m (low) 
•  Rrec = 1023 s-1 m-3 

  Example calculation 
•  Q⊥ = 10 MW m-3 
•  S⊥ = 6 x 1022 s-1 m-3 

•  frad = 0.3 (attached) 
•  frad = 0.9 (detached) 

  Recombination onset at Te < 1.5 eV 
  Detachment at Te < 1.0 eV 

Detached 
Attached 
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All routes to detachment predicted by model
 involve high frad 

  Detachment at NSTX-range of Q⊥, S⊥ can be achieved in
 model by 
•  increasing frad  (shown)  
•  increasing Γi-div (gas puff) 
•  increasing S⊥ (not shown) 

x 10 
Γi-div 
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High frad can be achieved with carbon in NSTX
 divertor at high ne and nz 

  Hulse-Post non-coronal
 radiative cooling curves for low
 Z impurities for n0/ne, ne-τrecy 

  Calculate max q|| that can be
 radiated 

  Express max q|| as function of
 distance from heat source for
 range of  fz    
 (Post JNM 220-222, 1014
 (1995) ) 

  Power losses due to deuterium
 Prad and ionization not
 considered 

  For NSTX, use n0 = 0.1 % and
 ne-τrecy = ne x  1e-3 s 
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Volumetric power and momentum losses are
 limited by Lx (R ) at high magnetic field shear 

  Fraction of q||  to be radiated is a function of Lx for given impurity 
•  high frad  only where Lx longest 

  Electron-ion recombination rate depends on divertor ion residence time 
•  Ion recombination time: τion~ 1−10 ms at Te =1.3 eV 
•  Ion residence time: τion ≤ 1 ms 

SOL width 

possible to detach 
Lx ~ 5-6 m 

difficult (impossible) 
to detach Lx ~ 1-2 m 
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Discussion 

  PDD regime with reduced qpk and good core confinement
 demonstrated in open geometry un-pumped divertor in a high
 power spherical torus 

  In an ST, modest q|| can yield high divertor qpk  
•  in NSTX, q||= 50-80 MW/m2 and qpk=6-12 MW/m2

 
•  Large radiated power and momentum losses are needed to reduce q|| 

  In NSTX density ramp discharges do not necessarily lead to PDD 
•  nsep weakly coupled with n-bar 

  In NSTX, PDD regime is accessible only  
•  in highly-shaped plasma configuration with high flux expansion divertor

 (high plasma plugging efficiency, reduced q||) 
•  modest divertor D2 injection still needed 

  ST SOL geometric effects appear to play dominant role in the above  


