

Prospects for pilot plants based on the tokamak, ST, and stellarator

J. Menard¹

- L. Bromberg², T. Brown¹, T. Burgess³, D. Dix⁴, L. El-Guebaly⁵, T. Gerrity², R.J. Goldston¹, R.J. Hawryluk¹, R. Kastner⁴, C. Kessel¹, S. Malang⁶, J. Minervini², G.H. Neilson¹, C.L. Neumeyer¹, S. Prager¹, M. Sawan⁵, J. Sheffield⁷, A. Sternlieb⁸, L. Waganer⁹, D. Whyte², M. Zarnstorff¹
 - ¹ Princeton Plasma Physics Laboratory, Princeton, NJ, USA
 - ² Massachussetts Institute of Technology, Cambridge, MA, USA
 - ³ Oak Ridge National Laboratory, Oak Ridge, TN, USA
 - ⁴ Princeton University, Princeton, NJ, USA
 - ⁵ University of Wisconsin, Madison, WI, USA
 - ⁶ Consultant, Fusion Nuclear Technology Consulting, Linkenheim, Germany
 - ⁷ University of Tennessee, Knoxville, TN, USA
 - ⁸ Israel Ministry of Defense, Tel Aviv, Israel (on sabbatical at PPPL)
 - ⁹ Consultant, formerly with The Boeing Company, St. Louis, MO, USA

23rd IAEA Fusion Energy Conference Daejeon, Republic of Korea Friday, 15 October 2010

Exploring "Pilot Plant" as a possible pathway from ITER to commercial fusion power plant

FNSF = Fusion Nuclear Science Facility CTF = Component Test Facility

Overview of Pilot Plant study

Goal of study:

Assess feasibility of integrating key science and technology capabilities of a fusion power plant at reduced device size

Targeted capabilities:

- Fusion Nuclear Science research, Component Testing
 - Steady-state plasma operating scenarios
 - Neutron wall loading ≥ 1MW/m²
 - Tritium self-sufficiency
- Maintenance scheme applicable to power plant
 - Demonstrate methods for fast replacement of in-vessel components
- Small net electricity production
 - Bridge gap between ITER/CTF and power plant (~1-1.5 GWe)

Motivation for studying 3 configurations:

- Advanced Tokamak (AT)
 - Most mature confinement physics, technology

- Spherical Tokamak (ST)
 - Potential for simplified maintenance, reduced cost

- Compact Stellarator (CS)
 - Low re-circulating power, low/no disruptions

Key pilot metric is overall electrical efficiency: Q_{eng}

$$Q_{eng} = \frac{Electricity\ produced}{Electricity\ consumed} = \frac{\eta_{th}(M_n P_n + P_\alpha + P_{aux} + P_{pump})}{\frac{P_{aux}}{\eta_{aux}} + P_{pump} + P_{sub} + P_{coils} + P_{control}}$$

Blanket and auxiliary heating and current-drive efficiency + fusion gain largely determine electrical efficiency Q_{eng}

Pumping, sub-systems power assumed to be proportional to $P_{thermal}$ – needs further research

= injected power wall plug efficiency η_{aux} = fusion power / auxiliary power Q = neutron energy multiplier M_n = neutron power from fusion = alpha power from fusion P_{aux} = injected power (heat + CD + control) = coolant pumping power P_{pump} = subsystems power P_{sub} P_{coils} = power lost in coils (Cu) = power used in plasma or plant control P_{control} that is not included in P_{ini} $= P_{pump} + P_{sub} + P_{coils} + P_{control}$

= thermal conversion efficiency

Assumptions and constraints

- Surface-average neutron wall loading: ⟨W_n⟩ ≥ 1 MW/m²
- Blanket thermal conversion:
 - $-\eta_{th}$ = 0.3, 0.45 this range incorporates leading concepts: He-cooled pebble-bed (HCPB), dual-coolant lead-lithium (DCLL)
- Steady-state operating scenarios:
 - AT/ST: fully non-inductive CD (BS+RF/NBI)
 - AT/CS: Superconducting (SC) coils, ST: Cu TF and SC PF
- Confinement and stability:
 - AT/ST: $\tau_E \propto$ ITER H-mode IPB98(y,2), β_N near/above no-wall limit
 - CS: τ_F ∞ stellarator L-mode ISS-04, β ≤ 6% (ARIES-CS)

1D neutronics calculations used to develop preliminary pilot plant radial builds

- 20 year plant lifetime, 6 full power years (FPY), 30% average availability,
- Blanket replacement: AT: 2.5 FPY, ST: 1.8/1.4 FPY IB/OB, CS: 1.7 FPY
- Skeleton-ring, vessel, SC coils are lifetime components, vessel re-weldable

- Use DCLL blankets
- TBR ~1.1 for 1.0 net

(assuming full blanket coverage)

- Damage to FS ≤ 80 dpa
- Re-weldability: ≤ 1 He appm
- SC magnets operated at 4K
 - Peak fast neutron fluence to Nb₃Sn (E_n > 0.1 MeV) ≤ 10¹⁹ n/cm²,
 - Peak nuclear heating ≤ 2mW/cm³,
 - Peak dpa to Cu stabilizer ≤ 6×10⁻³ dpa
 - Peak dose to electric insul. ≤ 10¹⁰ rads

Size of AT pilot driven by magnet technology

- For ITER TF magnet parameters, AT pilot would have $R_0 = 6-7m$
- Advances in SC TF coil technology and design needed (also needed for CS pilot)

- A = 4 = 4m / 1m
- $B_T = 6T$, $I_P = 7.7MA$
- Avg. $W_n = 1.3-1.8 \text{ MW/m}^2$
- Peak $W_n = 1.9-2.6 \text{ MW/m}^2$

Size of ST pilot depends primarily on achievable β_N

Higher density favorable for reducing β_N and H_{98} (also fast ion fraction)

Size of CS pilot driven by magnet technology and neutron wall loading, but not Q_{eng}

● = Pilot design point

- A = 4.5 = 4.75 m / 1.05 m
- $B_T = 5.6T$, $I_P = 1.7MA$ (BS)
- Avg. $W_n = 1.2-2 \text{ MW/m}^2$
- Peak $W_n = 2.4-4 \text{ MW/m}^2$

Pilot plant parametric trends:

	AT		ST		CS		
η_{th}	0.30	0.45	0.30	0.45	0.30	0.45	
$A = R_0 / a$	4	4	1.7	1.7	4.5	4.5	
R ₀ [m]	4	4	2.2	2.2	4.75	4.75	
P _{fus} [MW]	553	408	990	630	529	313	<
P _{aux} [MW]	79	100	50	60	12	18	
<w<sub>n> [MW/m²]</w<sub>	1.8	1.3	2.9	1.9	2	1.2	_
Peak W _n [MW/m²]	2.6	1.9	4.5	3.0	4.0	2.4	
Q _{DT}	7.0	4.1	19	10.5	42	17	
\mathbf{Q}_{eng}	1	1	1	1	2.7	2.7	

~2/3 linear scale of ARIES-AT/ST/CS

Fusion power:

AT, CS = 0.3-0.6GW, ST 1.5-2× higher

ST highest due to higher P_{fusion}

- Q_{DT,} Q_{eng}:
 Higher η_{th} reduces Q_{DT} ~ factor of 2
 - CS Q_{eng} highest due to small P_{aux}

Peak neutron wall loading ~1MW/m² accessible at modest performance:

Example: AT/ST with $P_{fus} \sim 200MW$, $Q_{DT} = 2.5/3.5$, $\beta_N = 2.7/3.9$

Pilot Plant can perform blanket development

- $Q_{eng}=1 \rightarrow P_{fus}=0.3-1 \text{ GWth} \rightarrow 17-56\text{kg of T per FPY}$
 - World T supply (CANDU) peaks at ~25-30 kg by 2025-2030
 - ITER + T decay projected to consume most of this amount
- Blanket development requirements: [Abdou, M. A., et al. Fus. Technol. 29 (1996) 1]
 - Local W_{neutron} ≥ 1 MW/m², test area ≥ 10 m², volume ≥ 5 m³
 - Three phases:
 - I. Fusion break-in ~ 0.3 MWy/m²
 - II. Engineering feasibility ~ 1−3 MWy/m²
 - III. Engineering development, reliability growth, ≥ 4-6 MWy/m² accumulated
- All three pilots have sufficient testing area, volume
- To achieve Phase III 6MWy/m² (peak) → 45-72 kg T
 - → Need TBR ≈ 1 (Example: need TBR ≥ 0.9 for 5-7 kg available T)

All 3 configurations employ vertical maintenance

- AT and CS: segments translated radially, removed vertically
- ST: Top TF legs demountable, core/CS removed vertically
- Future work: maintenance schemes for smaller components

Substantial R&D needed for FNSFs, pilots

- Improved magnet technology:
 - SC AT/CS: Higher TF magnets at ~2× higher current density
 - ST: Large single-turn radiation-tolerant Cu TF magnets
 - CS: Further R&D of shaping by trim coils, HTS monoliths
- High-efficiency non-inductive current drive for AT/ST
- Advanced physics:
 - AT/ST pilot: 100% non-inductive, high κ and β , low disruptivity
 - ST additionally requires non-inductive I_P ramp-up
 - QAS CS: need basis for simultaneous high confinement & β
- Plasma-material interface capabilities beyond ITER:
 - Long-pulses (~106s), high duty-factor (10-50% availability goal)
 - High power-loading (P/S_{wall}~1MW/m², P/R~30-60MW/m, W/S~0.5-1MJ/m²)
 - High-temperature first-wall (T_{wall} ~ 350-550C, possibly up to 700C)

Summary

- Identified Pilot Plant configurations sized between FNSF/CTF and a conventional Demo incorporating:
 - Radial builds compatible with shielding requirements, TBR~1
 - Neutron wall loading ≥ 1MW/m² for blanket development
 - Average W_n up to 2-3 MW/m² → accelerated blanket development
 - Maintenance schemes applicable to power plants
 - Small net electricity to bridge gap to GWe power plant

Appears feasible to integrate R&D capabilities needed for fusion commercialization in modest size device

Pilot Plant could be last step before first-generation commercial fusion system

Backup slides

Limit on SC TF coil effective current density is driven primarily by structural limits

- Possible ways to increase effective current density:
 - Alternative structural concepts: bucking versus wedging
 - Increased allowable stress via reduced cycling of magnet
 - Increased structural fraction by improvements in conductor:
 - superconducting properties, quench detection schemes resulting in decreased Cu requirements, decreased He
 - Grading of the conductor

Estimate that improvements above could increase effective current density by factor ≥ 1.5 (L. Bromberg)

- Reference:
 - J.H. Schultz, A. Radovinsky, and P. Titus, Description of the TF Magnet and FIRE-SCSS (FIRE-6) Design Concept, PSFC report PSFC/RR-04-3

More details on assumptions and constraints

- Surface-average neutron wall loading: ⟨W_n⟩ ≥ 1 MW/m²
 - Neutron wall load peaking factors (peak/avg): AT/ST/CS = 1.43/1.56/2.0
- Blanket thermal conversion:
 - η_{th} = 0.3, 0.45 this range incorporates leading concepts:
 He cooled pebble-bed (HCPB), dual-coolant lead-lithium (DCLL)
 - $M_n = 1.1$, blanket coolant pumping power $P_{pump} = 0.03 \times P_{th}$, $P_{sub} + P_{control} = 0.04 \times P_{th}$
- Steady-state operating scenarios:
 - Fully non-inductive CD (BS+RF/NBI) for AT/ST
 - $\eta_{aux} = 0.4$, $\eta_{CD} = I_{CD}R_0n_e/P_{CD} = 0.3 \times 10^{20}A/Wm^2$
 - Superconducting (SC) coils for AT/CS, SC PF for ST
- Confinement and stability:
 - AT/ST: τ_E ∝ ITER H-mode IPB98(y,2), β near/above no-wall limit
 - $\beta_N \le$ present experimental values, density at or below Greenwald limit
 - CS: τ_E ∞ stellarator L-mode: ISS-04, β ≤ 6% (ARIES-CS)
 - · Quasi-axisymmetry (QAS) for tokamak-like confinement, but higher n, lower T

Pilot plant parameters at Q_{eng} ≥ 1:

	Α	AT ST		CS		
η_{th}	0.30	0.45	0.30	0.45	0.30	0.45
$A = R_0 / a$	4	4	1.7	1.7	4.5	4.5
R₀ [m]	4	4	2.2	2.2	4.75	4.75
P _{fus} [MW]	553	408	990	630	529	313
P _{aux} [MW]	79	100	50	60	12	18
<w<sub>n> [MW/m²]</w<sub>	1.8	1.3	2.9	1.9	2	1.2
Peak W _n [MW/m²]	2.6	1.9	4.5	3.0	4.0	2.4
\mathbf{Q}_{DT}	7.0	4.1	19	10.5	42	17
\mathbf{Q}_{eng}	1	1	1	1	2.7	2.7

	Α	·Τ	ST		CS	
к	2	2	3.3	3.3	1.8	1.8
В _т [Т]	6	6	2.4	2.4	5.6	5.6
I _P [MA]	7.7	7.7	20	18	1.7	1.7
q ₉₅	3.8	3.8	7.3	7.8	1.5	1.5
q _{cyl}	2.4	2.4	2.8	3.0	-	-
f _{BS} or iota from BS	0.59	0.5	0.89	0.85	0.2	0.2
n _e /n _G	0.9	0.8	0.7	0.7	1	1
H ₉₈ or H _{ISS04}	1.2	1.1	1.35	1.3	2	1.6
βτ [%]	4.6	3.9	39	30	6	6
β_{N}	3.6	3	6	5.2	-	-