L-H transition and pedestal studies on MAST (EXC/2-3Ra) Hendrik Meyer EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK # L-H Threshold Studies in NSTX (EXC/2-3Rb) Stanley Kaye Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA #### Thanks to the co-authors #### EXC/2-3Ra: L-H transition and pedestal studies on MAST M.F.M De Bock^{1,2}, N.J. Conway¹, S.J. Freethy^{1,3}, K. Gibson³, A. Kirk¹, C.A. Michael¹, T. Morgan^{1,3}, R. Scannell¹, G. Naylor¹, S. Saarelma¹, A.N Saveliev⁴, V.F. Shevchenko¹, W. Suttrop⁵, D. Temple^{1,6}, R.G.L. Vann³ and the MAST and NBI Teams ¹EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK ²Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands #### EXC/2-3Rb: L-H Threshold Studies in NSTX R. Maingi², D. Battaglia², R.E. Bell¹, T. Biewer², C.S. Chang³, B.P. LeBlanc¹, J. Hosea¹, H. Kugel¹, H. Meyer⁴, G.-Y. Park³, J.R. Wilson¹ ¹Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA ²Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA ³New York University, New York, NY, USA ⁴EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK ³University of York, Heslington, York, YO10 5DD, UK ⁴loffe Institute, Politekhnicheskaya 26, 194021 St. Petersburg, Russia ⁵Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching, Germany ⁶Imperial College of Science, Technology and Medicine, London, UK #### Journey through the L-H transition for ITER ## H-mode access – ion species, shaping, 3D fields and I_p The L-H transition – E_r, T_e, and n_e The Pedestal – H_H~1, T_i and edge current **Summary** ### D has lower P_{LH} then He - NSTX: $P_{LH}^{He} \sim (1.2-1.4) P_{LH}^{D}$ (RF heating) - He: Profiles used to determine L-H and H-L transition. - MAST: P_{LH}^{He}~ 1.5 P_{LH}^D (D-NBI heating, ~85% He, ~15% D) - NSTX: No power hysteresis between L-H and H-L. #### H-mode access better at high κ and low δ - MAST: better H-mode access with increased κ. - No change in E_r due to shape change. - NSTX: Lower P_{LH} with lower δ (larger X-point radius R_x) ### Li "wall" and lower X-point ⇒ lower P_{LH} - NSTX: Li evaporation lowers P_{LH}. - Less recycling due to increased pumping. - Change is larger at high δ . - MAST: Lower P_{LH} with lower X-point. - SN plasma shifted down (similar in DN by κ change). - Change in L_c is unlikely to cause change in P_{IH} ⇒ recycling? | $Z_{\rm mag} \ ({ m m})$ | R _x (m) | Z _x (m) | $P_{ m LH}$ (MW) | $\frac{\overline{n_e}}{(10^{19} \text{m}^{-3})}$ | $S_{\rm pl}$ $({ m m}^2)$ | δ_1 | δ_{u} | κ | q 95 | L _c (m) | |--------------------------|--------------------|--------------------|------------------|--|---------------------------|------------|-----------------------|------|-------------|--------------------| | 0.21 | 0.58 | -1.25 | 1.3 | 2.5 | 21.5 | 0.44 | 0.18 | 1.67 | 3.5 | 13 | | 0.10 | 0.59 | -1.12 | 2.6 | 2.3 | 21.6 | 0.39 | 0.26 | 1.71 | 3.8 | 12 | | 0.0 | 0.57 | 1.12 | < 1.8 | 2.7 | 24.5 | 0.42 | 0.42 | 1.91 | 6.6 | 16 | | 0.0 | 0.57 | 1.04 | 1.8 | 2.6 | 23.4 | 0.42 | 0.42 | 1.80 | 5.5 | 13 | MAST: EXC/2-3Ra #### Magnetic n=3 perturbation increases P_{LH} - NSTX: Factor of <2 increase in P_{LH}/n_e with the application of n=3 perturbation fields (RMP). - mid-plane coils. - No change in poloidal or toroidal edge rotation. - MAST: P_{loss} increased by 80% with n=3 RMP (see A. Kirk EXD/8-2). - 30% increase leads to a delayed L-H transition. - Upper and lower coil array. - More positive E_r with RMP. ### **NSTX:** $P_{LH} \propto I_p$ correlates with ∇E_r - P_{LH} ∝ I_p observed - E_r modelled with XGC0. - Lower I_p ⇒ larger orbit losses ⇒ higher ∇Er at edge - ∇E_r ~ 4 MV/m² threshold for L-H transition at any I_p ### MAST: ∇E_r does not correlate with P_{LH} - L-mode E_r not changed by power scan or change in κ (1.8-1.9). - Application of n=3 RMP \Rightarrow E_r more positive \Leftrightarrow loss of H-mode. - But, power increase ⇔ again no change in E_r - $\omega_{\mathsf{E} \times \mathsf{B}} > \gamma_{\mathsf{max}}$ sufficient but not necessary $\Leftrightarrow \tilde{\omega}_{E \times B}$? #### No slow evolution towards critical T_e, ∇T_e - NSTX: No change in T_e, n_e, p_e or their gradients prior to the L/H transition. - Time resolution not sufficient to resolve evolution during the transition. - Clear increase of gradients after the transition. #### No fast evolution of E_r , ∇E_r , T_e , ∇T_e ... - MAST: no changes in E_r , T_e , n_e or their gradients prior to the L/H transition ($\Delta t < 0.2 \text{ ms}$) - T_e hardly changes through the transition, but n_e and ∇n_e does. - E_r and ∇E_r evolve on fastest time scale ($\tau \sim 0.6$ ms). - L-mode filaments suppressed in less than 0.1ms (visible light) - ⇒ Profiles evolve as consequence of "abrupt" change in transport. #### NSTX: RF gives faster access to H_H~1 - With RF H_H~ 1 can be accessed within 10ms of the L-H transition. - Type-III ELMy phase (H_H~0.8) eliminated by Li conditioning (see also EXD/2-2). - With beams access to H_H~1 is delayed by ~50 ms. - $\sim \tau_E$ or 1 2 slowing fast-ion down times. - Physics behind this is not yet clear. #### MAST: Flat T_i profile in the banana regime - Edge gradient of T_i depends on collisionality. - Low v_* ⇒ almost no gradient, $T_i >> T_e$ at separatrix. - Banana regime: if $L_{\perp} \sim \rho_i^{pol}$ whole pedestal closed system $\Rightarrow L_{Ti} >> \rho_i^{pol}$ [Kagan et.al. PoP 50 (2008) 085010]. - Flat T_i also observed on NSTX (R. Maingi EXD/2-2). #### MAST: Neoclassical prediction of j_b too low - Unique measurements of edge pitch angle, $\gamma_m \Rightarrow$ edge j_{ϕ} - Motional Stark Effect (MSE) - ∆*t*=2*m*s, ∆*R*=2*c*m. - 2D analysis of electron Bernstein emission (EBE) - ∆t~ 40 ms, ∆R~0.2cm. - Change γ_m larger than can be explained by neocl. calculation. - MSE broader j_o(R) ⇔ spatial resolution? - EBE suggests narrow profile, but total current agrees with MSE. - Requires negative edge current. - Standard neocl. theory valid with $\rho_i^{\text{pol}} \sim \rho_I \sim \Delta_{\text{ped}}$? #### MAST: Peeling-ballooning model seems incomplete - Experimental trajectory in broad agreement with peeling-ballooning model. - NSTX see R. Maingi (EXD/2-2). - Profiles linger at or above stability boundary for several 10 ms – 20 ms. - could be increase in $\Delta_{\text{ped}} \Leftrightarrow$ little evidence. - max(j₀) from MSE ⇔ probably too low! - Profiles more unstable with higher j_φ and flat T_i - New EBE 36 antenna imaging system. - fast, high spatial resolution. #### Large STs advance H-mode physics basis - On MAST and NSTX the L-H power threshold in He is 20% to 50% higher than in D. - No difference between P_{I H} and P_{HI} (NSTX). - Lower δ (NSTX), higher κ (MAST), lower X-point height (MAST) and Li evaporation (NSTX) lower P_{LH}. - The application of n=3 magnetic perturbations increase P_{LH} (see also EXD/8-2). - E_r, T_e, n_e or gradients thereof don't change prior to the L-H transition. - XGC0 calculations show correlation between ∇E_r and P_{LH}. - The edge current in H-mode seems to be higher than neoclassical predictions. - MAST MSE data can now resolve the ELM cycle. - Peeling-ballooning model for ELM onset seems incomplete. # Thank you for your attention #### Visible light fluctuations vanish in < 100µs MAST: EXC/2-3Ra L/H transition [S.J. Zweben et.al., Phys. Plasmas, 17 (2010) accepted] (Fig. 8) - Profiles evolve on slower time scales than fluctuations are suppressed. - Profiles react on abrupt change in transport.