

L-H transition and pedestal studies on MAST (EXC/2-3Ra)

Hendrik Meyer

EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK

L-H Threshold Studies in NSTX (EXC/2-3Rb)

Stanley Kaye

Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA

Thanks to the co-authors

EXC/2-3Ra: L-H transition and pedestal studies on MAST

M.F.M De Bock^{1,2}, N.J. Conway¹, S.J. Freethy^{1,3}, K. Gibson³, A. Kirk¹, C.A. Michael¹, T. Morgan^{1,3}, R. Scannell¹, G. Naylor¹, S. Saarelma¹, A.N Saveliev⁴, V.F. Shevchenko¹, W. Suttrop⁵, D. Temple^{1,6}, R.G.L. Vann³ and the MAST and NBI Teams

¹EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK

²Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands

EXC/2-3Rb: L-H Threshold Studies in NSTX

R. Maingi², D. Battaglia², R.E. Bell¹, T. Biewer², C.S. Chang³, B.P. LeBlanc¹, J. Hosea¹, H. Kugel¹, H. Meyer⁴, G.-Y. Park³, J.R. Wilson¹

¹Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, USA

²Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

³New York University, New York, NY, USA

⁴EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK

³University of York, Heslington, York, YO10 5DD, UK

⁴loffe Institute, Politekhnicheskaya 26, 194021 St. Petersburg, Russia

⁵Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching, Germany

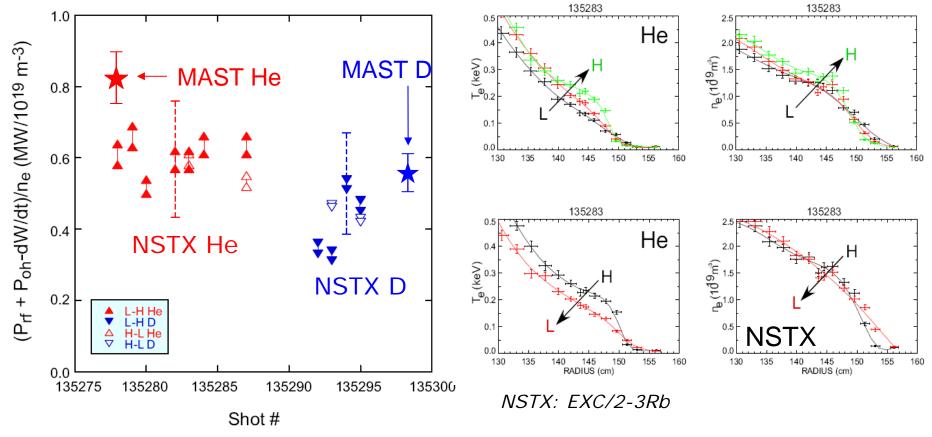
⁶Imperial College of Science, Technology and Medicine, London, UK

Journey through the L-H transition for ITER

H-mode access – ion species, shaping, 3D fields and I_p

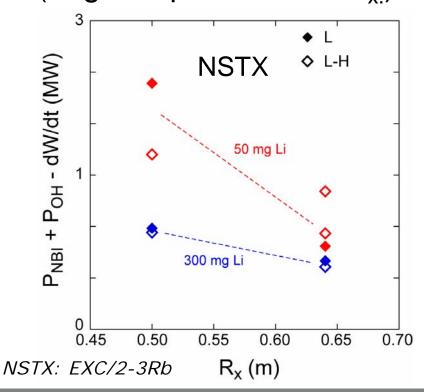
The L-H transition – E_r, T_e, and n_e

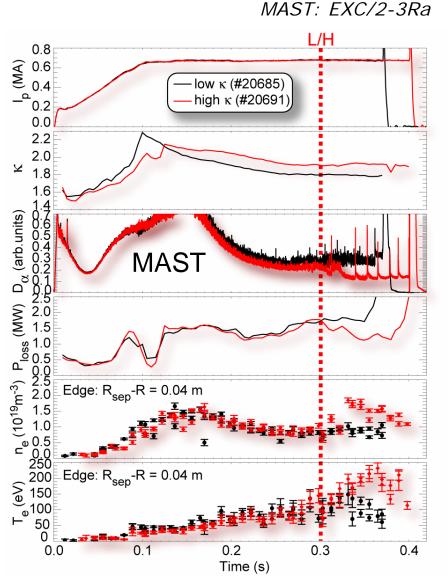
The Pedestal – H_H~1, T_i and edge current


Summary

D has lower P_{LH} then He

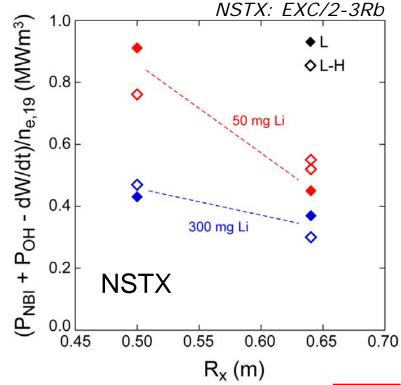
- NSTX: $P_{LH}^{He} \sim (1.2-1.4) P_{LH}^{D}$ (RF heating)
 - He: Profiles used to determine L-H and H-L transition.
- MAST: P_{LH}^{He}~ 1.5 P_{LH}^D (D-NBI heating, ~85% He, ~15% D)
- NSTX: No power hysteresis between L-H and H-L.





H-mode access better at high κ and low δ

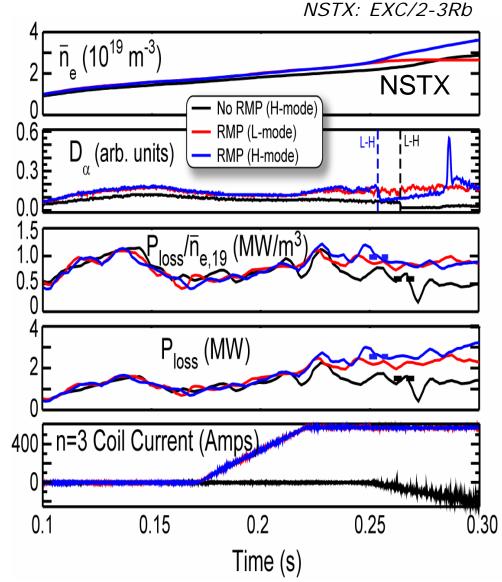
- MAST: better H-mode access with increased κ.
 - No change in E_r due to shape change.
- NSTX: Lower P_{LH} with lower δ (larger X-point radius R_x)



Li "wall" and lower X-point ⇒ lower P_{LH}

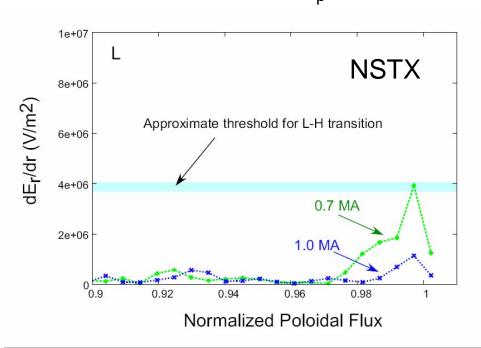
- NSTX: Li evaporation lowers P_{LH}.
 - Less recycling due to increased pumping.
 - Change is larger at high δ .
- MAST: Lower P_{LH} with lower X-point.
 - SN plasma shifted down (similar in DN by κ change).
 - Change in L_c is unlikely to cause change in P_{IH} ⇒ recycling?

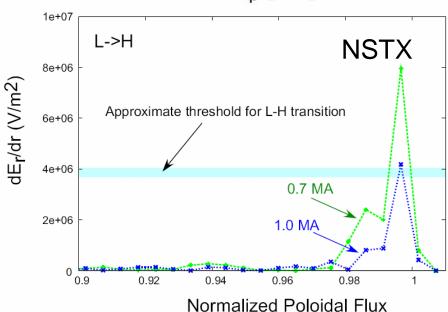
$Z_{\rm mag} \ ({ m m})$	R _x (m)	Z _x (m)	$P_{ m LH}$ (MW)	$\frac{\overline{n_e}}{(10^{19} \text{m}^{-3})}$	$S_{\rm pl}$ $({ m m}^2)$	δ_1	δ_{u}	κ	q 95	L _c (m)
0.21	0.58	-1.25	1.3	2.5	21.5	0.44	0.18	1.67	3.5	13
0.10	0.59	-1.12	2.6	2.3	21.6	0.39	0.26	1.71	3.8	12
0.0	0.57	1.12	< 1.8	2.7	24.5	0.42	0.42	1.91	6.6	16
0.0	0.57	1.04	1.8	2.6	23.4	0.42	0.42	1.80	5.5	13


MAST: EXC/2-3Ra

Magnetic n=3 perturbation increases P_{LH}

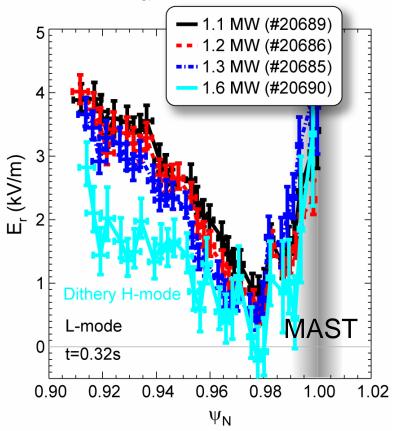
- NSTX: Factor of <2 increase in P_{LH}/n_e with the application of n=3 perturbation fields (RMP).
 - mid-plane coils.
 - No change in poloidal or toroidal edge rotation.
- MAST: P_{loss} increased by 80% with n=3 RMP (see A. Kirk EXD/8-2).
 - 30% increase leads to a delayed L-H transition.
 - Upper and lower coil array.
 - More positive E_r with RMP.

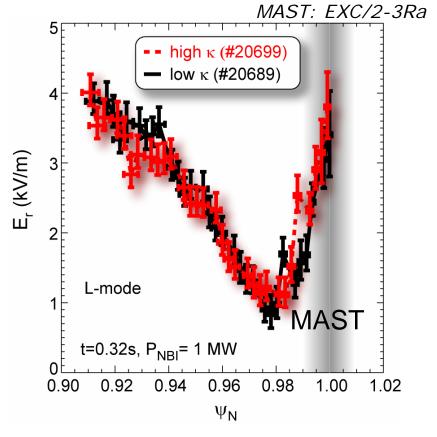




NSTX: $P_{LH} \propto I_p$ correlates with ∇E_r

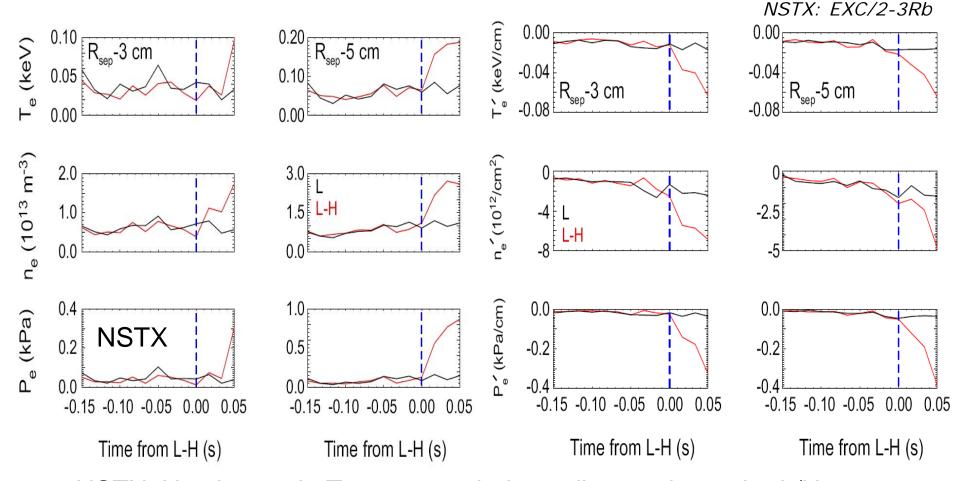
- P_{LH} ∝ I_p observed
- E_r modelled with XGC0.
- Lower I_p ⇒ larger orbit losses
 ⇒ higher ∇Er at edge
 - ∇E_r ~ 4 MV/m² threshold for L-H transition at any I_p



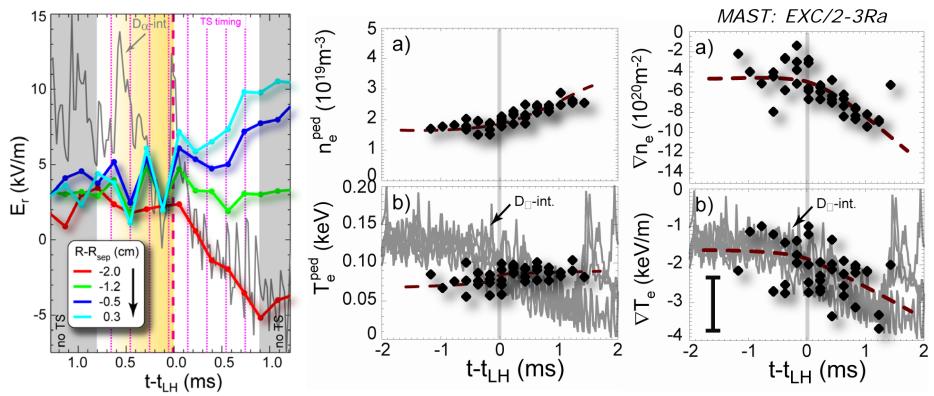


MAST: ∇E_r does not correlate with P_{LH}

- L-mode E_r not changed by power scan or change in κ (1.8-1.9).
- Application of n=3 RMP \Rightarrow E_r more positive \Leftrightarrow loss of H-mode.
 - But, power increase ⇔ again no change in E_r
- $\omega_{\mathsf{E} \times \mathsf{B}} > \gamma_{\mathsf{max}}$ sufficient but not necessary $\Leftrightarrow \tilde{\omega}_{E \times B}$?

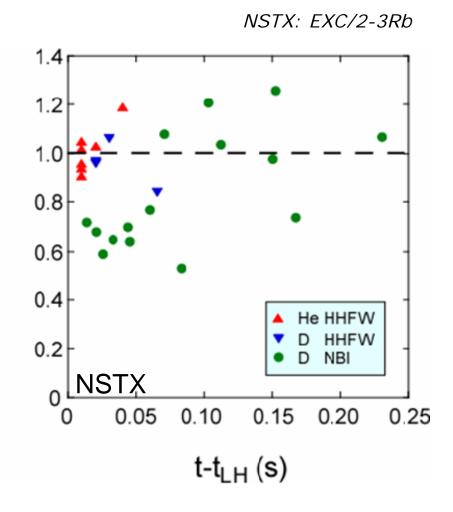


No slow evolution towards critical T_e, ∇T_e



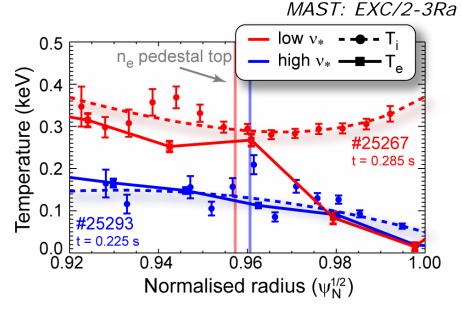
- NSTX: No change in T_e, n_e, p_e or their gradients prior to the L/H transition.
 - Time resolution not sufficient to resolve evolution during the transition.
- Clear increase of gradients after the transition.

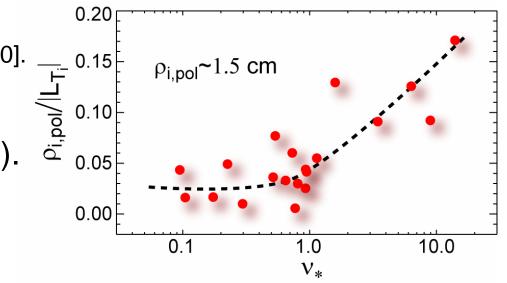
No fast evolution of E_r , ∇E_r , T_e , ∇T_e ...


- MAST: no changes in E_r , T_e , n_e or their gradients prior to the L/H transition ($\Delta t < 0.2 \text{ ms}$)
 - T_e hardly changes through the transition, but n_e and ∇n_e does.
 - E_r and ∇E_r evolve on fastest time scale ($\tau \sim 0.6$ ms).
- L-mode filaments suppressed in less than 0.1ms (visible light)
 - ⇒ Profiles evolve as consequence of "abrupt" change in transport.

NSTX: RF gives faster access to H_H~1

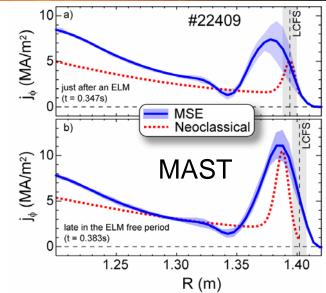
- With RF H_H~ 1 can be accessed within 10ms of the L-H transition.
 - Type-III ELMy phase (H_H~0.8) eliminated by Li conditioning (see also EXD/2-2).
- With beams access to H_H~1 is delayed by ~50 ms.
 - $\sim \tau_E$ or 1 2 slowing fast-ion down times.
- Physics behind this is not yet clear.

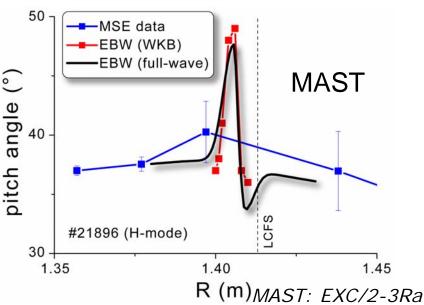




MAST: Flat T_i profile in the banana regime

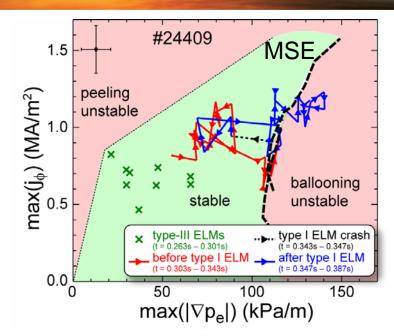
- Edge gradient of T_i
 depends on collisionality.
 - Low v_* ⇒ almost no gradient, $T_i >> T_e$ at separatrix.
- Banana regime: if $L_{\perp} \sim \rho_i^{pol}$ whole pedestal closed system $\Rightarrow L_{Ti} >> \rho_i^{pol}$ [Kagan et.al. PoP 50 (2008) 085010].
- Flat T_i also observed on NSTX (R. Maingi EXD/2-2).





MAST: Neoclassical prediction of j_b too low

- Unique measurements of edge pitch angle, $\gamma_m \Rightarrow$ edge j_{ϕ}
 - Motional Stark Effect (MSE)
 - ∆*t*=2*m*s, ∆*R*=2*c*m.
 - 2D analysis of electron Bernstein emission (EBE)
 - ∆t~ 40 ms, ∆R~0.2cm.
- Change γ_m larger than can be explained by neocl. calculation.
 - MSE broader j_o(R) ⇔ spatial resolution?
 - EBE suggests narrow profile, but total current agrees with MSE.
 - Requires negative edge current.
- Standard neocl. theory valid with $\rho_i^{\text{pol}} \sim \rho_I \sim \Delta_{\text{ped}}$?



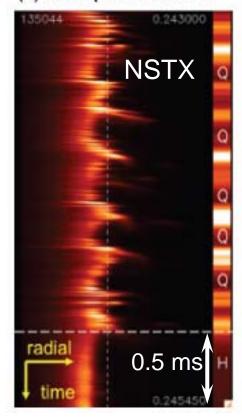
MAST: Peeling-ballooning model seems incomplete

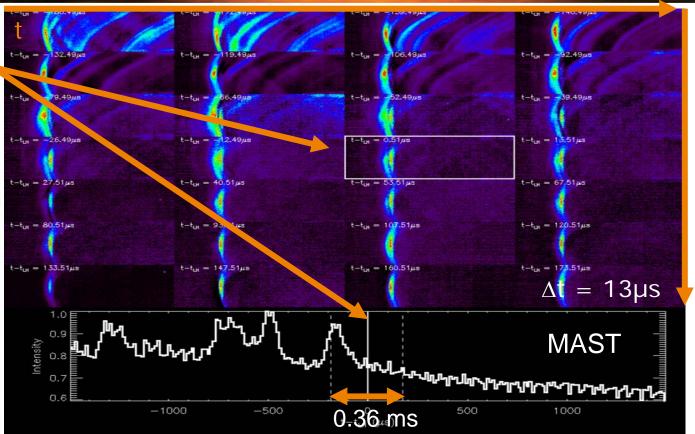
- Experimental trajectory in broad agreement with peeling-ballooning model.
 - NSTX see R. Maingi (EXD/2-2).
- Profiles linger at or above stability boundary for several 10 ms – 20 ms.
 - could be increase in $\Delta_{\text{ped}} \Leftrightarrow$ little evidence.
- max(j₀) from MSE ⇔ probably too low!
- Profiles more unstable with higher j_φ and flat T_i
- New EBE 36 antenna imaging system.
 - fast, high spatial resolution.

Large STs advance H-mode physics basis

- On MAST and NSTX the L-H power threshold in He is 20% to 50% higher than in D.
 - No difference between P_{I H} and P_{HI} (NSTX).
- Lower δ (NSTX), higher κ (MAST), lower X-point height (MAST) and Li evaporation (NSTX) lower P_{LH}.
- The application of n=3 magnetic perturbations increase P_{LH} (see also EXD/8-2).
- E_r, T_e, n_e or gradients thereof don't change prior to the L-H transition.
 - XGC0 calculations show correlation between ∇E_r and P_{LH}.
- The edge current in H-mode seems to be higher than neoclassical predictions.
 - MAST MSE data can now resolve the ELM cycle.
- Peeling-ballooning model for ELM onset seems incomplete.

Thank you for your attention




Visible light fluctuations vanish in < 100µs

MAST: EXC/2-3Ra

L/H transition

[S.J. Zweben et.al., Phys. Plasmas, 17 (2010) accepted] (Fig. 8)

- Profiles evolve on slower time scales than fluctuations are suppressed.
- Profiles react on abrupt change in transport.

