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Motivation: Measurements of high-k
5 fluctuations in NSTX A\ pppL
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* Coherent tangential scattering of EM waves
 Mazzucato et al., Nuclear Fusion 49 No 5, 055001 (May 2009)
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NSTX offers a unique platform

to study electron transport e pPPL
E THEORY
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* Transport in NSTX is dominated 1
by electron transport
* Strong E x B flow shear largely 20 s
suppress low-k fluctuations .
* |ITG is a minor player e
* lon transport is close to g

neoclassical level

* Plasma transport has strong
geometry dependence




The Gyrokinetic Tokamak Simulation code (GTS)
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Generalized gyrokinetic simulation model

Particle-in-cell approach; global simulation (Wang et al., PoP’06)
Turbulence fluctuations are perturbations on top of neoclassical equilibrium
Full kinetic electrons: drift kinetic for ITG, TEM etc.; gyrokinetic for ETG
Linear Coulomb collisions conserving particles, momentum and energy

{<n(rt)>, T(r), P,(r), and w,(r)} =» turbulence & transport (energy, particles,
momentum flux

Interfaced with MHD equilibrium codes and experimental data base (via
TRANSP)

Refine MHD equilibrium using JSOLVER with TRANSP profiles
Interfaced with Neoclassical via GTC-NEO (Wang et al,. CPC’04)
— GTC-NEO =>» Neoclassical equilibrium f,, ®, and transport
— Non-local physics associated with large ion orbits and steep gradients
Use of PETSc parallel library to solve the field quantities
High Performance parallel I/O with ADIOS (Adaptable I/O library, ORNL)



GTS is a massively parallel code
& e PPPL
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* 3 levels of parallelism
Particle scaling study of GTS on Jaguarpf (Cray XT3)

on Mo d ern d ay Number of particles moved 1 step in 1 second
I I I I I I I I I
supercomputers " ek scaing
. MPI+OpenMP
— 1D domain 10°F 6 OpenlI\J/Ie}glthreads E
- per MPI process _

decomposition in the
toroidal direction
(MPI)

— MPI-based particle
distribution within
each domain

Compute Power (number of particles)

— Fine-grain loop-level

parallelism B

: : ol | | | | | | | | |
implemented with 384 768 1536 3072 6144 12288 24576 49152 98304 196608
Open MP Number of cores

S. Ethier, PPPL, May 2010



ETG simulation model and parameters
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* Adiabatic ions (neglecting coupling with low-
k fluctuations)

* Global simulation covers ~ 450p, and full
toroidal and poloidal regions

* Grid size in perpendicular directions ~ p,
* Real electron mass

e Simulation of NSTX shot #124901 at 300
msec

* Plasma parameters read into GTS from
TRANSP run of shot 124901

* Working gas is helium (Z,4 = 2)

* Simulations carried out at NCCS/ORNL on mage courtesy of the National
Jaguar and Jaguarpf Center for Computational

Sciences, Oak Ridge National

* 22.6 billion particles, 400 million grid points Laboratory

e Simulations used 31232, 65536, and 98304
cores for 48 hours




Te

Profiles of electron temperature and magnetic
shear used as input for simulations . res;

K

 Weak reverse shear in the simulated region
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Characteristics of simulated ETG turbulence
¢ PPPL

Slowly growing, nonlinearly
generated zonal flows display fine
radial structures

Experimental identification of
streamers to validate nonlinear ETG
simulation models and to
understand effects of multi-scale
coupling

Calculated ., ~ 0.2 - 0.3 m?%/sec —
too low for this case close to ETG

marginality (estimated experimental
Y. = 1.2 +50%)

Tested for sensitivity to
experimental errors in plasma
profiles: gradient Te increased by
20% leads to about 2X increase in
growth rate and saturated flux

COMPUTATION

Image generated by Kwan-Liu Ma (P.I.), Chad Jones, and Chris Ho
of UC Davis, as part of the SciDAC Ultrascale Visualization Institute
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ETG-driven transport causes considerable
relaxation of T, profile during simulation
HE

COMPUTATION

* Effective driver (VT,, +(8T,)ss) decreases = g, drops with
time
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Anti-relaxation scheme implemented to

maintain a constant gradient drive

e PPPL
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* Compensate for the effect of evolving of :
= Dof/Dt = - {vp..Vf,-v. Vof, + ...}
where 8f, = (mv?/(2T,) — 3/2)((8T)/T,)f,

with 8T = (1/3n)/ dvmv*df

N
)

* Validation of anti-relaxation 1_2
scheme for ITG-driven ion £
transport against DIlI-D :> ;.z
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Time evolution of electron heat conductivity
and comparison with experimental value , ...,
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ETG drives a significant fraction of the

N electron transport in NSTX e —
N THEORY
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* Eliminating the influence of profile relaxation seems essential
for achieving steady-state in collisionless ETG simulations

* |Increasing the temperature gradient within experimental
uncertainties brings the steady-state value of the heat
conductivity to the experimental level

* Avalue of %, ~ 1.2 is obtained with the constant drive and the
uncertainties over local plasma profiles, indicating that ETG can
be a major contributor to the electron heat transport

e Adding the equilibrium electric field Er (equilibrium ExB shear),
as calculated by the GTC-NEO code, has little impact on the
results of the simulation.



Comparable density fluctuation spectra

5 between simulation and experiment_.qq-;
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* Exponential power -2.6 (in k, spectrum) and -5.3 (in k) in

simulation compared to -4.5 of k; spectrum in experiments

* Ray-tracing calculation (by F. Poli) suggests the need for a more
comprehensive synthetic diagnostic that takes into account the
beam trajectories and experimental uncertainties

simulation
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Strong nonlinear energy coupling
in spectral dynamics

= e PPPL
= THEQRY
* Strong spectrum anisotropy: e Strong energy coupling to e-
ky>>k, GAM
* Nonlinear streamer * e-GAM & zonal flow damping
generation important

:
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ETG turbulence spreads

e pPPL

Ballistic outward spreading
(to positive magnetic shear
region)

How fast: ~ (1 —2) x 103 c,
How far: ~ a few tens of p,

Little inward spreading due
to reversed magnetic shear
Results are for the case with

anti-relaxation and 20%
increase in Te gradient
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Development of a comprehensive synthetic

diagnostic of high-k measurement ...,
= THEQRY
E,(v,) = { X (35 - 1)]fdthd3r'E(r ) €D i t)J
Direction & T 4
amplitude of k. Fourier Transform of density fluctuations

weighted by the beam intensity

density profile, ,
equilibrium l
<~

. ::> m ion Simulations
Beam tracing Computatio w

of spectra
E.(r)
i ']
predict measured j> Synthetic high-k
(k,..k,) space spectra

[F. Poli et al, Phys. Plasmas, in press]



Use the collection efficiency to construct

a filter (k,kg) for the spectra N

F— THEORY
The detection relative efficiency depends on: :

* scattering angle 10721
* change in the magnetic field direction \/:v/o

Collection efficiency = filter
-6 .
F ~exp(-k’a’/2a”) 10 filter
cos o = cos(0 - 6,) - 2sinf, sinHsin’(5¢)/2)
[E. Mazzucato, Plasma Phys. Control Fusion 48 1749 (2006)] 10
[F. Poli et al, Phys. Plasmas, in press] k, (cm™)
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Summary and remarks
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First global, nonlinear ETG simulations for realistic discharges carried out
for direct validation against experimental measurements in NSTX

Qualitative agreement with experiment in density fluctuation spectrum

ETG contribution to electron transport may be significant within plasma
profile uncertainties

Eliminating influence of profile relaxation is crucial in simulations
Impact of E, equilibrium electric field on ETG transport seems to be low

Highly remarkable nonlinear spectral dynamics: strong spectrum
anisotropy with k, << kg; strong energy coupling to e-GAM; long term
zonal flow effect ...

ETG turbulence spreading and effect identified
Ongoing work:

- effects of collisions on zonal flow and e-GAM damping and their
influence on steady state spectrum and turbulence level

- Development of a comprehensive synthetic diagnostic
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