Pedestal Characterization and Stability of Small-ELM Regimes in NSTX*

A. Sontag’, J. Canik!, R. Maingi', J. Manickam?, P. Snyder3, R. Bell?, S. Gerhardt?, S.
Kubota?, B. LeBlanc?, T. Osbornes, K. Tritz°

QD NSTX

Small-ELM Regime Observed Coincident with Edge Instability

« Small-ELM (Type-V*) operation highly desirable in NSTX
OWpup < 1% per ELM
— no large oscillations at edge compared to Type-I

*R. Maingi, et al., Nucl. Fusion 45 (2005) 264

 Downward bias & high edge collisionality required for
access

- 0,%%P < -5 mm necessary (but not sufficient)

- A% ped > 1'2

— no correlation with edge rotation or rotation shear
still need to determine E x B shear correlation

- Low-frequency (< 10 kHz) oscillations observed coincident
with Type-V ELM transition

— ST equivalent to edge harmonic oscillation (EHO)?
EHO allows access to ELM-free QH-mode at standard-A
— possible saturated kink
— rotation has complex role
— edge collisionality important
EHO provides edge transport, reduces peeling-ballooning instability drive

Poloidal Mirnov array indicates n = 1 base freq.
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— multiple harmonics observed in some cases
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— higher harmonic base frequency in Li-induced ELM-free
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— rotating with plasma just inside pedestal N
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— 10 um Be filters eliminate edge radiation ch.9 MMWMMWMWWW

Similar Shots Examined for Causes of Transition to

Small-ELM Regime
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Edge reflectometer shows density fluctuations oL 10 um Be filter 0.3-80 kHz i
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— increased transport required if mode is stabilizing Type-I o ek 8 e T
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— analysis only reliable up to p ~ 0.85 ime (<)
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— more detailed analysis required _ _
must account for particle sources and sinks TRANSP Single Fluid Keff
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« Type-l ELMs stabilized with 6 ramp-down o6
— both shots have Type-l| ELMs prior to 0.3 s 8:2
— other shape parameters held constant e
— shape change will affect peeling-ballooning 0
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* J,%P reduction well after transition 100
— both cases start with §,5¢P < -5 mm 58
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- Profiles determined using time-slice 8-2(5’ -
averaging Kinetic equilibrium technique 0.0
developed on DIlI-D
— run EFIT at TS laser times Shot 135155 Profile Fits
— map n,, T, T, to y, space 4
— fit tanh function to re-mapped profiles 3
— compute kinetic EFIT using tanh fits § 2

— calculate jgzg form Sauter model :

« Pedestal pressure peak shifted inward &
iIncreased for Type-V

— P, nearly identical
— Type-l profile has increased pressure gradient

magnitude near edge
Type-V case has largest magnitude

— Type-V profile relatively constant throughout
shot

small-ELMs have little effect on profiles

* Rotation magnitude similar
— large error bars near edge
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Rotation Profile Comparison
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— also large relative fluctuations in slowly rotating 60
edge

— analysis of wider range of shots shows wide
variation in rotation and rotation shear for both
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- Edge collisionality increased in Type-V case

— previous observations show increased v’
stabilizes Type-|

— presumably due to reduced g5 & peeling drive
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Bootstrap Current Profiles
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- Edge current peak slightly reduced in Type- € o.1of
V case % 005
_ jus slightly higher in Type-V case 00 o7 o8 03
— peeling-ballooning stability calculations required by
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Edge Instability Observed in Multiple Diagnostics

Toroidal Rotation & Density Profiles
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Stability Analysis Indicates Type-V Case Closer to
Ballooning Boundary

ELITE  indicates n = 3 most unstable mode for

both cases & 135155 7/(w./2) contours
_ <

— run forn =3,6,9,12,15 2 Unstable o2 =0.1

— initial PEST calculations also show n = 3 most unstable ¥ l

— NSTX is typically on peeling (current driven) side of £ 0.8

stability curve
ST geometry naturally leads to higher jg5 than at standard-A
strong shaping stabilizing to ballooning modes
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Normalized Pressure Gradient (a)

Decreased triangularity moves operating point
closer to ballooning boundary

— closeton=15

— lower 0 decreases ballooning stabilization
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Change in operating point not the same as
transition from ELMy to QH-mode with EHO

— EHO moves operating point across peeling boundary
— both NSTX cases still on peeling boundary 4 5 6 7 8 9 10
— need more statistics for NSTX Normalized Pressure Gradient («)
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Further Analysis Required to Determine Cause of
Stabilization of Type-l ELMs

Edge instability observed coincident with small-ELM transition
— observed in many NSTX discharges

— may have similar role to EHO at normal-A = need to determine how instability affects
transport

No correlation with toroidal rotation or rotation shear
— need to examine ExB shearing rate

Increased collisionality (v, > 2) and 6P < -5 mm needed for Type-V ELMs
— Type V cases have increased pedestal pressure

Stability analysis shows Type-V case closer to ballooning boundary
— need to include MSE in equilibrium reconstructions
— need to analyze more shots for better statistics

Need to include particle sources and sinks to determine if mode is affecting
transport
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