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NSTX Mission Elements

ST-FNSF

ST Pilot Plant

ITER

• Advance ST as candidate for Fusion 

Nuclear Science Facility (FNSF)

• Develop solutions for 

plasma-material interface 

• Advance toroidal confinement 

physics for ITER and beyond

• Develop ST as fusion energy system

Lithium “Snowflake”
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NSTX research goals and milestones strongly 

support development of basis for ST-based FNSF

1. Develop MA-level plasma current formation and ramp-up

2. Advance innovative magnetic geometries, first wall solutions

3. Understand ST confinement and stability at fusion-relevant parameters

4. Develop stability control techniques for long-pulse, disruption-free ops

5. Sustain current, control profiles with beams, waves, pumping, fueling 

6. Develop normally-conducting radiation-tolerant magnets for ST applications

7. Extend ST performance to near-burning-plasma conditions

ReNeW Thrust 16: “Develop the ST to advance fusion nuclear science”

consists of 7 Thrust Elements:

These elements provide outline for subsequent FY11-13 plans
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Achieved substantial progress on Coaxial Helicity Injection 

(CHI) and fast wave heating of low-current plasmas in 2010

• Generated 1MA using 40% less 

flux than induction-only case

– Low internal inductance (li ≈ 0.35), 

and high elongation > 2

– Suitable for advanced scenarios

IAEA: R. Raman, B.A. Nelson U Washington

Time (sec)

CHI + OH OH only

Difference

5

• Achieved high Te(0) ~ 3keV at 

IP=300kA w/ only 1.4MW of HHFW

- Previous best was Te(0) ~ 1.5keV at 

twice the RF power

- Enabled by 2009 antenna upgrades

• Non-inductive fraction ~60-70% with 

25-30% from RFCD from high Te(0)

• Projects to ~100% NI at PRF = 3-4MW

• Will test further in 2011-12 run
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Plasma Start-up Milestone R(12-2):  Assess confinement, 

heating, and ramp-up of CHI start-up plasmas

• GOAL: develop ~0.3-0.4MA fully non-inductive start-up plasma for 

NBI-CD ramp-up to ~0.8MA in Upgrade  prototype ST-FNSF

• FY12:  HHFW & NBI heating & current drive will be used to:
– Heat CHI  OH discharges to assess confinement vs. non-CHI

– Heat and drive current progressively earlier in target plasma

– Minimize/eliminate OH flux in CHI start-up, sustain with RF

6
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• Divertor heat flux width decreases with 

increased plasma current IP
– Potentially major implications for ITER 

– NSTX:  λq
mid further decreases with Li

NSTX has contributed strongly to divertor heat flux width 

studies*, and is developing new heat-flux mitigation methods

*Joint Research Target (3 U.S. Facilities)

 NSTX Upgrade with conventional divertor

(LSN, flux expansion of 10-15) projects to 

very high peak heat flux up to 30-45MW/m2

7

• Divertor heat flux inversely proportional to 

flux expansion over a factor of five

• Snowflake high flux expansion 40–60, 

larger divertor volume and radiation 

 U/D balanced snowflake divertor projects to 

acceptable heat flux < 10MW/m2 in Upgrade 

at highest expected IP = 2MA, PAUX=15MW

IAEA: V. Soukhanovskii, LLNL

0 mg Li: a=1.6

150 mg Li: a=1.1

300 mg Li: a=0.4

λq
mid ~ Ip

-a

IAEA: T.K. Gray, J-W Ahn, ORNL 
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Boundary Physics Milestone R(11-3):  

Assess very high flux expansion divertor operation

• High flux expansion “snowflake” divertor will be assessed:

– Magnetic controllability – especially up/down-balanced snowflake 

– Divertor heat flux handling and power accountability

– Pumping with lithium coatings

– Impurity production

• Potential benefits of mitigation synergies will be assessed:

– e.g. combining high flux expansion with gas-seeded radiation

• Additional PFs for U/L snowflake included in upgrade CS:

– Provide independent control of strike-point location and flux expansion

8

NSTX

Upgrade
NSTX
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Operation with outer strike-point on Mo LLD (coated with Li) 

technically successful, achieved high plasma performance

◄ SP on inner carbon divertor (no ELMs)

◄ SP on LLD, TLLD < TLi-melt

◄ SP on LLD, TLLD > TLi-melt (+ fueling differences)

9

• No ELMs, no  small, small  larger
High-Z impurities also reduced, bN > 4 sustained

Understanding roles of d, C, Mo, Li, ELMs motivates Mo tiles on inboard divertor

Mo Tiles
(for 2011-12)

LLD

LLD FY2010 results:

• LLD did not increase D pumping  

beyond that achieved with LiTER
– Solid Li on C pumps D quite efficiently

– C on LLD may have impacted D pumping

• No evidence of Mo from LLD in 

plasma during normal operation 

• Operation with strike-point (SP) on 

LLD reduced core impurities
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Lithium Milestone R(12-1):  Investigate relationship between 

lithium-conditioned surface composition & plasma behavior

• Chemistry of Li on C/Mo critical, complex, under-diagnosed 

• Li very chemically active  prompt surface analysis required to 

characterize the lithiated surface conditions during a shot

• An in-situ materials analysis particle probe (MAPP) being 

installed on NSTX to provide prompt surface analysis

– Ex-vessel but in-vacuo surface analysis within minutes of plasma 

exposure using state of the art tools

• Li experiments will utilize MAPP to study:

•Reactions between evaporated Li and PFCs, gases  

•Correlation surface composition and plasma 

behavior, comparisons to lab experiments, modeling

•Characterizations of fueling efficiency, recycling

10

•J-P Allain, Purdue
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ITER/cross-cutting Milestone R(11-4): H-mode pedestal 

transport, turbulence, and stability response to 3D fields

• ELMs stabilized by Li coatings

• ELMs triggered by 3D fields, not suppressed

– Profile changes from 3D fields depend on Li, n*, q95

• Will study possible mechanisms for modifying transport 

• Pedestal turbulence trends: BES, high-k scattering, gas-puff imaging

• Transport response: Improved Thomson, impurity injection, edge SXR

• Supports 2011 JRT on H-mode pedestal structure

NSTX provides unique data to understand 

response to 3D fields for ELM control:

• J. Canik - ORNL

No n=3

With n=3
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NSTX is addressing multi-scale turbulent transport 

issues critical to future devices – ITER and next step STs

High-k tangential scattering
+ new edge back-scattering (UCLA)

• Low-k fluctuations decrease after transition to H-Mode

• Fluctuations also increase after H L back-transition

•D. Smith, U. Wisconsin

12

Low-k BES
(Beam Emission Spectroscopy)

m-TEARING

1 10 100

k  (cm-1)

k rs

0.1 1 10





ETGITG/TEM

• BES also contributing to energetic particle research

•Y. Ren, PPPL

L-Mode

H-Mode
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NSTX is advancing the understanding of the collisionality  

scaling (i.e. 1/ne* ) of ST normalized energy confinement

• New high-k scattering measurements 

show fluctuation levels apparently 

increase at lower n*

• Inconsistent with ST global confinement 

scaling trends from NSTX, MAST

• Non-linear GYRO simulations of lower-k

m-tearing predict ce proportional to n*

•W. Guttenfelder, PPPL

(PRL accepted)

r/a ~ 0.6

•Y. Ren, PPPL

• Suggests m-tearing playing role in ST e-transport

• Predominantly EM turbulence from high plasma b
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Transport Milestone R(11-1): Measure fluctuations 

responsible for turbulent electron, ion, and impurity transport

• High-k scattering measurements have identified ETG

• Low-k fluctuations (micro-tearing, ITG/TEM) and fast-ion-

driven modes (e.g. GAE) may also contribute to e-transport

• Low-k fluctuations also contribute significantly to momentum, 

ion thermal, and particle/impurity transport

– Turbulence and *AE radial eigenfunctions will be measured with BES 

• Turbulence will also be measured w/ reflectometer, interferometer, GPI

– Measured k-spectrum will be correlated with energy diffusivities

– Perturbative particle/impurity transport experiments will be performed

• Gas puff imaging, density measurement, low-to-high-k dn, edge SXR

• Supports 2012 JRT on core transport predictive capability

14
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Stability/Control Milestone R(11-2): Assess ST stability

dependence on aspect ratio and  boundary shaping 

• Next-step ST designs 

commonly assume increased 

k = 3-3.5 and A=1.6-1.7

• NSTX has begun to explore 

stability of higher k and A

• NSTX scenarios will be 

systematically extended 

toward shapes of the 

Upgrade and next-steps

– Maximum k, li, and sustainable 

bN will be assessed

– RWM stability and control will 

also be assessed, optimized

15

A=1.45, k = 2.4 A=1.65, k = 2.8

NSTX-U

limiter 

boundary

•S. Gerhardt, E. Kolemen (PPPL), S. Sabbagh (Columbia)
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FY2011-12 milestones target highest priority 

research areas for NSTX Upgrade, ITER, and FNSF

16

Expt. Run Weeks:

1) Transport & Turbulence

2) Macroscopic Stability

3) Boundary/Lithium Physics

4) Wave-Particle Interaction

5) Solenoid-free start-up, ramp-up

6) Advanced Scenarios & Control 

7) ITER urgent needs, cross-cutting

Joint Research Targets (3 US facilities):

FY2011FY2010 FY2012

15 w/ ARRA 4 10

Measure fluctuations responsible for 

turbulent electron, ion, impurity transport

Assess H-mode characteristics
as a function of collisionality and 
lithium conditioning

Characterize H-mode 
pedestal structure

Understanding of divertor   
heat flux, transport in scrape-off layer

Assess relationship between lithium-
conditioned surface composition and 
plasma behavior

Assess ST stability dependence on 
aspect ratio and  boundary shaping 
(with ASC TSG)

Characterize HHFW heating, CD, and 
ramp-up in deuterium H-mode

Assess sustainable beta and 
disruptivity near and above the ideal no-
wall limit 

Understand core transport
and enhance predictive capability

Assess confinement, heating, and 
ramp-up of CHI start-up plasmas
(with WPI/HHFW TSG)

Assess very high flux expansion 
divertor operation (with ASC TSG)

Assess access to reduced density 
and n* in high-performance scenarios 
(with MS, BP TSGs)

BES, High-k

MAPP, BES, High-k, Lithium

2nd SPA, RWM state-space control

MPTS, MSE-LIF, edge SXR

Snowflake, MPTS, Lithium

CHI, NBI, HHFW

SGI, Lithium, HHFW

10

BES, High-k

H-mode pedestal transport, turbulence, 
and stability response to 3D fields
(cross-cutting with T&T, BP, MS)

BES, High-k, 2nd SPA, edge SXR

R11-1

R11-2

R11-3

R11-4

R12-1

R12-2

R12-3

FY11 JRT FY12 JRT
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in FY2011-12 would accelerate understanding 

of edge profile control using 3D fields and AE*-induced fast-ion transport

17

Expt. Run Weeks:

1) Transport & Turbulence

2) Macroscopic Stability

3) Boundary/Lithium Physics

4) Wave-Particle Interaction

5) Solenoid-free start-up, ramp-up

6) Advanced Scenarios & Control 

7) ITER urgent needs, cross-cutting

Joint Research Targets (3 US facilities):

FY2011FY2010 FY2012

15 w/ ARRA 4

Measure fluctuations responsible for 

turbulent electron, ion, impurity transport

Assess H-mode characteristics
as a function of collisionality and 
lithium conditioning

Characterize H-mode 
pedestal structure

Understanding of divertor   
heat flux, transport in scrape-off layer

Assess relationship between lithium-
conditioned surface composition and 
plasma behavior

Assess ST stability dependence on 
aspect ratio and  boundary shaping 
(with ASC TSG)

Characterize HHFW heating, CD, and 
ramp-up in deuterium H-mode

Assess sustainable beta and 
disruptivity near and above the ideal no-
wall limit 

Understand core transport
and enhance predictive capability

Assess confinement, heating, and 
ramp-up of CHI start-up plasmas
(with WPI/HHFW TSG)

Assess very high flux expansion 
divertor operation (with ASC TSG)

Assess access to reduced density 
and n* in high-performance scenarios 
(with MS, BP TSGs)

10

H-mode pedestal transport, turbulence, 
and stability response to 3D fields
(cross-cutting with T&T, BP, MS)

Investigate magnetic braking physics 
and toroidal rotation control at low n* 
(with ASC TSG)

Real-time rotation, 2nd SPA, RWM 
state-space control, HHFW

Assess predictive capability of mode-
induced fast-ion transport

Tangential FIDA,  BES, reflectometer

IR12-1

IR12-2

FY11 JRT FY12 JRT

10 4

Enhanced utilization
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NSTX Participation in ITPA Joint Experiments and Activities

• Advanced Scenarios and Control (5)
– IOS-1.2 Study seeding effects on ITER baseline discharges
– IOS-4.1 Access conditions for advanced inductive scenario with ITER-relevant restrictions
– IOS-4.3 Collisionality scaling of confinement in advanced inductive plasmas
– IOS-5.2 Maintaining ICRH coupling in expected ITER regime
– IOS-6.2 li controller (Ip ramp) with primary voltage/additional heating

• Boundary Physics and Lithium Research (16)
– PEP-6 Pedestal structure and ELM stability in DN
– PEP-19 Basic mechanisms of edge transport with resonant magnetic perturbations in toroidal plasma confinement devices
– PEP-23 Quantification of the requirements for ELM suppression by magnetic perturbations from off-midplane coils
– PEP-24 Minimum pellet size for ELM pacing
– PEP-25 Inter-machine comparison of ELM control by magnetic field perturbations from midplane RMP coils
– PEP-26 Critical parameters for achieving L-H transitions
– PEP-27 Pedestal profile evolution following L-H/H-L transition
– PEP-28 Physics of H-mode access with different X-point height
– PEP-29 Vertical jolts/kicks for ELM triggering and control
– PEP-31 Pedestal structure and edge relaxation mechanisms in I-mode
– PEP-32 Access to and exit from H-mode with ELM mitigation at low input power above PLH
– PEP-33 Effects of current ramps on the L-H transition and on the stability and confinement of H-modes at low power above the threshold
– PEP-34 Non-resonant magnetic field driven QH-mode
– DSOL-20 Transient divertor reattachment
– DSOL-21 Introduction of pre-characterized dust for dust transport studies in divertor and SOL
– DSOL-24 Disruption heat loads

• Macroscopic Stability (7)
– MDC-1 Disruption mitigation by massive gas jets
– MDC-2 Joint experiments on resistive wall mode physics
– MDC-4 Neoclassical tearing mode physics – aspect ratio comparison
– MDC-12 Non-resonant magnetic braking
– MDC-14 Rotation effects on neoclassical tearing modes
– MDC-15 Disruption database development
– MDC-17 Active disruption avoidance

• Transport and Turbulence (11)
– TC-1 Confinement scaling in ELMy H-modes: beta degradation
– TC-2 Hysteresis and access to H-mode with H~1
– TC-4 H-mode transition and confinement dependence on ionic species
– TC-9 Scaling of intrinsic rotation with no external momentum input
– TC-10 Experimental identification of ITG, TEM and ETG turbulence and comparison with codes
– TC-11 He and impurity profiles and transport coefficients
– TC-12 H-mode transport and confinement at low aspect ratio
– TC-14 RF rotation drive
– TC-15 Dependence of momentum and particle pinch on collisionality
– TC-17 rho-star scaling of intrinsic torque
– TC-19 Characteristics of I-mode plasmas

• Wave-Particle Interactions (5)
– EP-1 Measurements of damping rate of intermediate toroidal mode number Alfven eigenmodes
– EP-2 Fast ion losses and redistribution from localized AEs
– EP-3 Fast ion transport by small scale turbulence
– EP-4 Effect of dynamical friction (drag) at resonance on nonlinear AE evolution
– EP-6 Fast ion losses and associated heat load from edge perturbations (ELMs and RMPs)

NSTX typically actively 
participates in ~25 Joint 
Experiments/Activities 
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Plans for FY2012-13 analysis and research

• Complete analysis and publication of FY2011-12 data 

• Research activities supporting post-Upgrade ops:
– Start-up: Model/plan CHI upgrades and prep for plasma guns

– Boundary: Model/plan divertor cryo-pumps, divertor diagnostics

– Lithium:  Assess/model/plan additional Mo tiles, next generation LLD

– Transport, EP:  Model/design new high-k scattering, assess SSNPA

– MHD:  3D coil physics design for RWM/RMP/TM/EFC/NTV/TAE

– Control:  Model/plan for real-time-MSE for NBI J-profile control

• Write NSTX Upgrade 5 year plan for 2014-18

• Update/extend physics design of ST-FNSF
– Further develop design concepts utilizing NSTX team expertise

– Predictive modeling of start-up, sustainment, transport, stability, divertor

19
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(Initial) plans for FY2013 NSTX collaboration

• Solicited/received information on collaboration opportunities
– Enthusiastic response from:  MAST, LTX, Pegasus, DIII-D, C-Mod, KSTAR, EAST

– Also gathered info on PPPL NSTX researcher interests and skills

• ~30% time available for collaboration: ~10 FTE/yr for 2-3 yrs

• Aligning opportunities & skills with needs/goals of NSTX-U, OSR
– Plasma start-up:  Pegasus, MAST

– Advanced divertor, pedestal/SOL:  MAST, EAST, C-Mod

– Lithium research, high-Z PFCs: EAST, LTX, C-Mod, several U.S. universities

– Core/edge transport:  MAST, C-Mod, DIII-D, EAST

– Stability/MHD, 3D fields/islands, disruptions, RMP:  KSTAR, LHD, DIII-D, MAST

– Energetic particles, *AE:  MAST, JET (possible DT campaign), LHD

– RF/NBI development for SS ops/control:  EAST (ICRF/ECH/LH) , KSTAR (ICRF/ECH/NBI) , C-Mod (ICRF/LH)

– Advanced scenarios development, tokamak ops:  KSTAR, EAST, DIII-D

– ST-FNSF/CTF physics design:  MAST

20

• Example: NSTX-U has goal of 100% NICD at 

high b + q(r) control using 1st + new 2nd NBI
• Collaboration on advanced scenarios, profile control, 

energetic particle physics mutually beneficial:

DIII-D, EAST, KSTAR, MAST

• Issues: funding, inclusion of NSTX collaborators Normalized minor radius

NBI RTAN [cm]
__________________ 

50,  60, 70, 130
60,  70,120,130
70,110,120,130
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MAST operation during 2012-13 provides excellent 

opportunity for NSTX researcher collaboration on MAST

21

Discussions with MAST and 

NSTX physicists and managers 

Sep 2010 - Mar 2011 identified 

topics of mutual interest:

• Steady-state, high 

performance scenarios

– Turbulent ion and electron 

transport

– Pedestal physics, 

advanced divertors

• Energetic particle physics

– NBI current redistribution

• 3D physics

– Perturbed 3D equilibria
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With Culham and MAST, aim to develop of common 

understanding, vision, design of ST-based FNSF/CTF

• Materials, fusion nuclear science, PMI 

major themes in U.S. fusion program

• ST can play important role in 

materials/PMI and FNS facility

• CCFE and PPPL are lead labs 

investigating, advancing ST concept

• Both labs agree it would be beneficial 

to work more closely 

– Developing PPPL concepts and strategy via 

FNSF-Pilot Plant studies

– Challenge:  both sides operating existing 

machines + prepping for major Upgrades

PPPL ST 
Pilot/FNSF

Culham
ST-CTF

22

J. Menard visiting Culham/MAST in April 2011 to initiate
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Summary:  NSTX and NSTX Upgrade plans for FY2011-13 

strongly support OFES vision for fusion for coming decade

• Plasma dynamics and control 
– Detailed measurements and simulation of turbulence, transport, core/edge stability

– Integrating this knowledge to develop advanced high-b ST scenarios

– Upgrade will extend scenarios to full non-inductive operation w/ advanced control

• Materials in fusion environment, harness fusion power
– Providing critical data on SOL-width scaling and SOL turbulence

– Developing novel divertors for heat-flux mitigation, Li-based PFCs

– NSTX + Upgrade provide critical data for assessing the ST as potential FNSF 

• Validated predictive capability
– Performing leading validation efforts for ST turbulent transport, tokamak/ST RWM 

stability and 3D MHD effects, edge turbulence, fast-ion transport from *AE

– Upgrade will substantially extend range of collisionality, rotation, fast-ion drive, …

• 3-D magnetic fields
– Research to understand transport/stability response to 3D fields for ITER, beyond

– A leader in 3D perturbed equilibrium analysis/R&D, 3D perturbed transport (NTV)

23

Upgrade outage is opportunity for enhanced collaborations
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Backup

24
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NSTX recent and upcoming program schedule

• NSTX PAC-29 – Jan 26-28, 2011

– FY11-12 Research Milestones/Priorities

– Preparation for Upgrade

– Alignment of Program with FES vision

• Research Forum for FY11-12 run – Mar 15-18, 2011

– 170+ research proposals, 210 run days (~2.5-3x available)

– 55 team members, 17 institutions

• FES 2013 Budget Planning Meeting – Apr 11, 2011

• Begin 2nd/final phase of FY11 run – Jun/Jul 2011

– Remaining FY11 run-time: 10 weeks

– FY12 run (10 wks) will start in fall 2011 (no vent planned)

– Finish FY12 run by end of Feb. 2012  start Upgrade outage

25
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A vision for U.S. fusion research in the coming decade 

has emerged from OFES emphasizing 4 research themes:

• Plasma dynamics and control 
– Perform detailed measurement of underlying processes, connect to theory, 

develop integrated understanding, demonstrate advanced scenarios in tokamaks

• Materials in fusion environment, harness fusion power
– Understand and control processes beyond the last closed flux surface, including 

open field line physics, plasma-surface interactions, coupling between SOL & PSI

– Determine the fusion nuclear science facility (FNSF) geometry

– Determine the materials the FNSF will be made from and should test

• Validated predictive capability
– Increase emphasis on validation of physics models incorporated in simulation 

– Increase confidence in extrapolating tokamak/ST in support of ITER, next-steps 

• 3-D magnetic fields
– Determine the optimum level of 3D field in toroidal magnetic configuration 

accounting for both physics and engineering complexity in the optimization

• Enhance the theory of 3-D equilibria, stability, and transport research

• Increase emphasis in 3-D fields near-term on domestic facilities

26
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Backup

NSTX Upgrade

27
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Access to reduced collisionality is needed to understand  

underlying causes of ST transport, scaling to next-steps

• n* also impacts RWM stability, rotation 
damping, range of other physics

Normalized electron collisionality ne*  ne / Te
2

ITER BtE (e-static g-Bohm)  r*
-3 b0 n*

-0.14 q-1.7

Petty et al., PoP, Vol. 11 (2004)

• Higher toroidal field & plasma current enable access to higher temperature

• Higher temperature reduces collisionality, but increases equilibration time

• Upgrade: Double field and current + 3-5x increase in pulse duration to 

substantially narrow capability gap  3-6x decrease in collisionality

ITER-like 

scaling

ST-CTF 

?

constant 
q, b, r*

NSTX Upgrade

• Future ST’s are projected to operate at      
10-100x lower normalized collisionality n*

• Conventional tokamaks observe weak 
inverse dependence of confinement on n*

• NSTX observes much stronger scaling vs. n*
– Does favorable scaling extend to lower n* ?
– What modes dominate e-transport in ST ?

• Electrostatic or electromagnetic?
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Increased auxiliary heating and current drive are needed to 

fully exploit increased field, current, and pulse duration 

•Higher heating power to access high temperature and b at low collisionality

– Need additional 4-10MW, depending on confinement scaling

•Increased external current drive to access and study 100% non-inductive

– Need 0.25-0.5MA compatible with conditions of ramp-up and sustained plasmas

•Upgrade: double neutral beam power + more tangential injection

– More tangential injection  up to 2 times higher efficiency, current profile control 

– ITER-level high-heat-flux plasma boundary physics capabilities & challenges

• q(r) profile very important for 

global stability, electron transport, 

Alfvénic instability behavior

– Variation of mix of NBI tangency 

radii would enable core q control

Use 4 of 6 sources

ENBI=90keV, PINJ = 8MW

fGW=0.95

Normalized minor radius

RTAN [cm]
__________________ 

50,  60, 70, 130
60,  70,120,130
70,110,120,130

IP = 725kA, BT=0.55T,  bN = 6.2, bT = 14%

H98y2 = 1.2, fNICD = 100%, fp = 73%
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Magnet operation at ~1T (vs. 0.55T)      

within a factor of 2 of next-step STs 

2nd NBI with 5 MW, 5s at larger RTAN 

Present CS

New center stack for 1T, 2MA, 5s 

New CS

R0 /a = 1.25-1.3   1.5-1.6

0.2

0.4

0.6

0.8

1.0

BT 
[Tesla]

tPulse (sec)

1 MA

0.75 MA

IP  2 MA

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Present NBI
RTAN =

50,60,70cm

2nd NBI
RTAN =

110,120,130cm  

2nd NBIPresent NBI

NBI current drive profiles [MA/m2]

Normalized minor radius

Up to 2 times higher NBI current drive 

efficiency, and current profile control 

NSTX Upgrade will bridge the device 

and performance gap toward next-step STs
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Non-inductive ramp-up to ~0.4MA possible with RF + new CS, 

ramp-up to ~1MA possible with new CS + more tangential 2nd NBI

• High field  0.5T needed for efficient RF heating

• ~2s duration needed for ramp-up equilibration

• Higher field 0.51T projected to increase electron 

temperature and bootstrap current fraction 

Ramp to ~0.4MA with fast wave heating:              Extend ramp to 0.8-1MA with 2nd NBI:

• Benefits of more tangential injection:
• Increased NBI absorption = 4080% at low IP
• Current drive efficiency increases:  x1.5-2

• New CS needed for ~3-5s for ramp-up equilibration
• Higher field 0.51T also projected to increase electron temperature 

and NBI-CD efficiency

Time (s)

Present NBI
More tangential 

2nd NBI

TSC Simulations – C. Kessel
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NSTX Upgrade reference operating scenarios highlight

major research capabilities and needs of Upgrade

• Dual NBI capability (P/Dt):  15MW/1.5s, 10MW/5s, 5MW/10s

• TF flat-top capability: 1T for 6s, 0.75T for 10s, total OH flux = 2.1Wb

• Divertor peak heat flux limit = 10MW/m2 for 5s (Tcarbon-tile  1200°C)

• Plasma carbon Zeff  2.5 (goal) 

32

2MA operation may require ne / nGreenwald = 0.7 

to aid achievement of sufficiently high Te to 

reduce loop voltage to 0.25V for 5s flat-top

1.5-2MA operation for 5s will require heat-flux 
mitigation utilizing:  U/L power sharing, 
detachment, and/or snowflake (possibly all three)

This is major goal of Upgrade research program

bN  5.5, tE = ITER-98y2 H-mode scaling, SOL width scaling  IP
-1.6

Reference 

Scenario

BT 

[T]

IP 

[MA]

Dtflat 

[s]

NICD 

[%]

ne / 

nGreenwald

PNBI 

[MW]

PRF 

[MW]

PTOT 

[MW]

Unmitigated 

divertor peak 

heat flux 

[MW/m2]   

(fexp = 20)

Unmitigated 

divertor peak 

heat flux 

[MW/m2]   

(fexp = 60)

D pumping 

required       
(NBI fueling only) 

[1021 s-1]

Long pulse 0.8 1 7 50-70   1 6 0 6 5 2 0.7

High non-inductive 1 0.8 5 80-100   1 8 0 8 5 2 1.0

High IP 1 1.5 5 50-70   1 8 0 8 13 4 1.0

Max IP 1 2 4-5 40-60 0.7-1 10 0 10 25 8 1.2

Max IP & power 1 2 4-5 40-60   1 10 5 15 38 13 1.2
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Backup

Additional Milestone Descriptions

33
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Summary of Research Milestones for FY2011-12

• FY2011 FES Joint Research Target:   Improve understanding of physics 
mechanisms responsible for pedestal structure, compare with the predictive models

• FY2012 NSTX Research milestones:

– R(11-1): Measure fluctuations responsible for turbulent electron, ion, impurity transport

– R(11-2): Assess ST stability dependence on plasma aspect ratio, boundary shaping

– R(11-3): Assess very high flux expansion divertor operation

– R(11-4): H-mode pedestal transport, turbulence, and stability response to 3D fields

• FY2012 FES Joint Research Target:   Improve understanding of core transport 

and enhanced capability to predict core temperature and density profiles

• FY2012 NSTX Research milestones:

– R(12-1): Investigate relationship between Li-conditioned surface composition, plasma behavior

– R(12-2): Assess confinement, heating, and ramp-up of CHI start-up plasmas

– R(12-3): Assess access to reduced density, n* in high-performance scenarios

– IR(12-1): Investigate magnetic braking physics and develop toroidal rotation control at low n*

– IR(12-2): Assess predictive capability of mode-induced fast-ion transport
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Scenarios/MHD Milestone R(12-3): Assess access to reduced 

density and collisionality in high-performance scenarios

• Some next-step ST scenarios based on operating at lower 

Greenwald density and/or n* than routinely accessed in NSTX 

• Reduced ne and n* via Li pumping has been achieved, but 

additional gas fueling is typically required to avoid disruption 

during IP ramp and/or in the early flat-top and high-b phase 

• Goal: characterize and avoid the underlying disruption causes:

• Loss of access to H-mode, locked-modes, b limits, double tearing, …

• Possible methods for stability improvement include:

• Changes in current ramp-rate (li and q(r) evolution), H-mode timing

• Shape evolution, heating/beta evolution and control

• Improved fueling control, and varied pumping
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ITER/cross-cutting Milestone R(11-4): H-mode pedestal 

transport, turbulence, and stability response to 3D fields

• ELMs stabilized by Li coatings

• ELMs triggered by 3D fields, not suppressed
– Small density change during n=3 3D fields

– Te and pedestal pressure increase  ELM

– q95 ~ 11 optimal for ELM triggering – why? 

• J. Canik - ORNL

• Will study possible mechanisms for modifying transport: 

– island shielding reduction, stochastic-field ExB convective transport

– banana diffusion and ripple loss, zonal flow damping, ExB shear mods

• Pedestal turbulence trends: BES, high-k scattering, gas-puff imaging

• Transport response: Improved Thomson, impurity injection, edge SXR

• Supports 2011 JRT on H-mode pedestal structure

NSTX provides unique data to understand 

response to 3D fields for ELM control:
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Backup

Boundary Physics

37
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Pedestal structure and underlying MHD/transport 

mechanisms will be elucidated by FY 2011 JRT effort

• Continuing progress in pedestal studies

– Pedestal workshop w/ Alcator C-mod 

(09/2010)

– Application of pedestal analysis tools and 

interface with modeling

– FY 2010 – FY 2011 experiments

• Pedestal pressure

– Pped∝ Ip
2 and increases with triangularity

– Builds up during ELM cycle, saturates at lower 

Ip late in ELM cycle

– Analysis of pedestal data with PB theory

• Physics of EP H-mode with H98~1.7

• Planned research (R11-4)

– Pedestal transport, turbulence, stability 

with 3D fields

• Roles of particle and thermal heat transport

38
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Pedestal structure and underlying MHD/transport 

mechanisms will be elucidated by FY 2011 JRT effort

39

measured

GYRO

With lithium

Non-lithium

• Document dependence of pedestal structure in on Ip, Bt, d

– Stability analysis with ELITE, PEST; height analysis with EPED

• Evaluate edge transport rates and correlate with turbulence

– With lithium: role of recycling and fueling (SOLPS, UEDGE)

– In regimes with separate particle and thermal transport 

channels, e.g. EP H-mode and I-mode

– Compare with paleoclassical and neoclassical (XGC) transport 

models

– Evaluate role of ETG in limiting edge Te gradient (GYRO)

• ETG unstable in steep gradient region (yN > 0.92) 

– threshold likely set by density gradient  

• ETG stable at top of pedestal (yN = 0.88)

– threshold likely sensitive to Zeff Te / Ti and s/q

• Continue ELM stability studies 

– Role of ne and Te gradients, and lithium

– Role of diamagnetic stabilization (BOUT)
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NSTX studies of ELM regimes and ELM control contribute to 

mitigation strategies for ITER and future STs

• ELM response to lithium, 3D fields, X-points

• Small ELM (Type V) regime

– Type I ELMs stabilized

– Observed EHO-like edge instability (f <10 kHz)

• Initiated ELM suppression experiment using n=3 

off-midplane coils

– Developed stable plasma shifted down by 20 cm

• With midplane n=3 coils, found threshold current 

and optimal q95 window for ELM triggering

– ELM triggering on NSTX: weak pedestal 

modification, vacuum Chirikov width > 0.3, no pitch-

aligned with wide q95 range (~9~11), n*e>0.5

• Planned research in FY2011-2012

– Development of small ELM regimes at low n*, high Pin

– ELM dependence on shape and magnetic balance

– 2nd SPA for flexible spectrum (n=1,2,3) for ELM 

stability studies

40
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Backup

Enhanced Pedestal H-mode
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ASC Experiments Tested Triggering and Control of Enhanced 

Pedestal H-Modes (EP-H)

• EP-H typically triggered by an ELM 

- well after L->H transition.

• Confinement improves ~50%

- fNI~70% very high for this Ip/shape.

• Has typically resulted in bN limit disruption.

• 2010 run goal: reliably trigger and 

control EP-H modes.

– n=3 pulses for triggering

– bN feedback for control

• n=3 pulses which triggered ELMs 

not reliable in triggering EP-H.

• Developed a low-q95 scenario with 

EP-H transitions at end of IP ramp.

– bN controller reduced power after 

EP-H transition.

– 2nd ELM terminated EP-H

• (single LITER that day).

• Implications for FY-11 & 12:

– Revisit when dual LITER system is 

operational.

– Understand if q95, IP or something 

else governs access. 

– Assess prospect for high-fNI

operation at reduced IP.
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Thermal barrier: Edge Te, Ti double, with a reduction 
in the edge ne gradient, and an increase in vf shear

EP H-mode

H-mode

separatrix
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Backup

Transport and Turbulence
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BES Observed Decrease in Fluctuations at L-H transition

from Edge to Core Regions

R. Fonck, G. McKee, D. Smith, and I. Uzun-Kaymak (UW-Madison) and B. Stratton (PPPL)
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• kr backscattering measurements from improved reflectometer

show turbulence suppression at the Electron Transport Barrier 

(ETB) location (R≈146 cm) after L-H transition

L-H Transition Study on NSTX Characterizes both Power 

Threshold and Turbulence

• PLH decreases with RX and Li deposition

– Consistent with XGC-0 predicted Er well depth

– BT at X-point location is important in 

determining PLH

– Plan to study the effect of X-point height and to 

investigate PLH dependence on BTX with XGC-0

L-mode H-mode H-mode

ETB locationETB location
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• BES measured Global Alfvén Eigenmode (GAE) 

peak amplitudes consistent with numerically 

simulated electron thermal transport

– BES calibrated mode structures and amplitudes 

for future ORBIT simulations

• ETG is identified in NSTX reversed 

shear plasmas

– Off-mid-plane ETG streamers nonlinearly 

driven by mid-plane unstable ETG with 

steep Te profile (nonlinear GYRO)

– High-k measurement at off-mid-plane will 

be conducted

• High-k scattering at Z/a≈-0.3 possible

• Shifting magnetic axis will be tried.

– To investigate robustness of physics with 

constant-q B field scan and PNBI scan

NSTX is also Exploring Other Mechanisms of Electron 

Thermal Transport (R11-1, TC-10, 2012 JRT)
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Relative mode profile

δI/I amplitude 738 

kHz GAE (17 ms 

average)

No Frequency 

compensation

Peak 

Growth 

Rate

Peak 

Saturated 

Amplitude

-0.4         -0.2        0         0.2        0.4   

r/a

-0.2                        

0.2                         

Z/a 0                         

0.4                         

-0.4                         
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Neon puff separatrix

• Neon diffusivity neoclassical in the core 

accompanied by some anomalous convection 

– Under-resolved at the edge and suffered from low signal

• Plasma rotation enhancing core impurity transport 

without invoking low-k turbulence 

• New Multi-Energy Soft X-Ray diagnostic in 2010

– ~1 cm resolution; <100 μs response; high SNR; r/a>0.65

• STRAHL transport code being used

– Neoclassical calculation embedded; Up-to-date 

atomic data

• Impurity transport study at plasma edge 

– Carbon build up in ELM-free discharges

– Z dependence of impurity transport

– Measure edge turbulence and its relation to impurity 

transport (BES, High-k, reflectometer etc.)

Impurity Transport Studies will Exploit New Diagnostics and 

Modeling Capabilities (R11-1, 2012 JRT)
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141139A02

• Preliminary results indicating higher and more edge-localized 

intrinsic torque in NSTX than in DIII-D (TC-9)

– Qualitatively similar torque profile as observed on DIII-D

• Understanding the mechanism of 

intrinsic torque is important for ITER

– Projection and optimization of rotation profile

• Plans for FY11 and FY 12:

– Characterize role of turbulence in driving 

intrinsic rotation (R11-1)

– Modification to intrinsic drive by RF/HHFW (TC-14)

– Interaction of intrinsic drive with other torques (e.g. NTV) 

– Contribute data to ρ* scaling experiment (TC-17)

– Look for signature of thermal ion orbit loss

NSTX is Participating in ITPA JEX Studying Intrinsic Torque
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• Current high-kr scattering system 

will be removed to install the 2nd

NB during upgrade

– Design of a new high-k scattering 

system is in progress and will be 

completed during FY13 and FY14

• Extensive comparison between 

measurements and micro-

instability calculations including 

GYRO, GTS, GS2, GTC-NEO

– Use synthetic diagnostics to 

compare simulated and measured 

fluctuating quantities and their 

spectral characteristics

T&T TSG Activities for FY13 and FY14

BES views with 

micro-tearing density 

fluctuations 

(nonlinear GYRO  

NSTX H-mode)

k space coverage for 

the present and future 

high-k scattering 

systems with ETG k 

spectrum (non-linear 

GYRO, NSTX L-mode)

Present high-k Future high-k
kθ ρs

k
r 
ρ

s
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Backup

Macroscopic Stability
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NSTX has begun to explore stability impact of higher aspect 

ratio and elongation in preparation for Upgrade, next-steps

• Successfully operated at bN > 4 for 

several tCR at Upgrade A and k

• Found li  0.6 required to avoid VDE 

at higher A with present n=0 control

52

A=1.45, k = 2.4 A=1.65, k = 2.8

NSTX-U

limiter 

boundary

•S. Gerhardt, E. Kolemen - PPPL
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NSTX is first tokamak to implement advanced RWM 

state-space controller, and has utilized it to sustain high bN

~3000+ 

states

Full 3-D 

model
RWM

eigenfunction(

2 phases,    2 

states)

)ˆ,ˆ( 21 xx
3x̂ 4x̂ Nx̂

truncate

State reduction (< 20 states)

State space feedback with 12 states

 Controller can compensate for 

wall currents

 Including mode-induced current

 Examined for ITER

 Successful initial experiments

 Suppressed disruption due to n 

= 1 applied error field

 Best feedback phase produced 

long pulse, bN = 6.4, bN / li = 13

- device R, L, mutual inductances

- instability B field / plasma response

- modeled sensor response

IAEA: S. Sabbagh, Columbia U
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Improvements in stability control techniques have 

significantly reduced RWM instability at high bN and low li

• High normalized beta bN = 6–7 and high bN / li = 10-14 routinely accessed

• Improvements:  sensor AC compensation + combined BP+BR + state-space controller

• Disruption probability for βN / li > 11 plasmas reduced from ~50% to ~14% 

54

IAEA: S. Sabbagh, Columbia U

PAC27-6
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• PF-4 coil used in both senses, relative to PF-5.

– In same sense, gives more vertical field, 

needed for high current.

– In opposite sense can increase squareness.

• Coil used in pre-programmed mode, and in shape 

control loop.

– With PF-4/PF-5 ratios far larger than required 

for NSTX-Upgrade

• Higher aspect ratio (NSTX-U) discharges 

demonstrated simultaneous high bn (≥ 5) and high 

k (≥ 2.6)

• Compare new, higher aspect-ratio boundary, 

consistent with NSTX-U centerstack, with current 

high performance plasma shape.

PCS upgrades & PF4 coil commissioned to support NSTX-U 

operations, provide shape control flexibility
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Backup

Waves and Energetic Particles
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Progress in sustaining HHFW heating and current drive at low IP ~ 300kA
(Use low IP ohmic target to prototype heating solenoid-free start-up plasma)

57

• High Te(0) ~ 3keV with only 1.4MW

• Previous best at low IP ~250kA 

was ~1.5keV at twice the power

• PRF and high Te sustained longer

• But, max power was limited in 

FY2010 by arcing attributed to Li 

dust formation near/on antenna

• Non-inductive fraction 60-70% 

sustained (25-30% RF, 35-40% BS)

3keV

Results project to ~100% 

non-inductive at PRF = 3-4MW 
(will test further in 2011-12 run)
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TAE-Avalanche induced neutron rate drop modeled 

successfully using NOVA and ORBIT codes 

IAEA: E. Fredrickson IAEA: M. Podestà  UCI

• Toroidal Alfvén Eigenmode (TAE) avalanches in NBI-heated plasmas 
associated with transient reductions in DD neutron rate - “sea” of TAEs 
expected in ITER and future STs

• Change in beam-ion profile measured with Fast-ion D-alpha (FIDA)

• Modeled using NOVA and ORBIT codes

– Mode structure obtained by comparing NOVA calculations with reflectometer data

– Fast ion dynamics in the presence of TAEs calculated by guiding-center code ORBIT

Fast Ion Profile 
(E = 30-60keV)

IAEA:G-Y. Fu
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TAE Avalanches Lead to Major Modifications of the

Beam Driven Current Profile

All (Neo)classical physics.
Discrepancy between 

reconstruction and total due to 

large classical JNBCD.

PAC 27-6, 27-35

700 kA High-bP with Rapid TAE Avalanches

• Modeled TAE avalanches using spatially and 

temporally localized fast-ion diffusivity DFI(y,t) .

– Use Sn drops to determine DFI(y,t) details.

– Reinforces need for predictive modeling of avalanche 

transport.

• FY-11 & 12 scenario modeling plans

– Examine NSTX-U scenario results with various DFI

profiles, improved equilibrium solvers.

– Interface with transport TSG to identify plausible 

transport models.

With Impulsive DFI.

Reduced JNBCD eliminates 

discrepancy between 

reconstruction and total.

EP-2
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Waves and Energetic Particle Research for FY2011-2012

• Understand, develop high-harmonic fast-wave for heating, CD

2010:  HHFW generated 60% NICD at low IP ~ 300kA with PRF=1.4MW

– Utilize antenna upgrade as tool for start-up, ramp-up, sustainment of 

advanced scenarios - e.g. HHFW heating of CHI+OH and CHI plasmas

– Overcome/avoid problem of Li-compounds/dust on antenna

– Improve resilience to edge transients (ELMs), understand edge power 

losses (surface waves, PDI) and NBI fast-ion interactions

– Use HHFW as tool in NBI H-modes

• Develop predictive capability for fast-ion transport by *AE

2009-10: TAE-Avalanche induced neutron rate drop modeled 

successfully using NOVA and ORBIT codes 

– Extend *AE avalanche results obtained in L-mode to H-mode 

scenarios/profiles (BES + improved reflectometry + tangential FIDA)

– Compare measured to predicted fast-ion transport – M3D-K validation 

in support of ITER, NSTX Upgrade, next-steps
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Backup

Lithium Research
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Operation with outer strike-point on Mo LLD (coated with Li) 

compatible with achievement of high-performance plasmas

◄ Strike-point (SP) on inner carbon divertor
• Carbon Zeff = 3-4 typical of LiTER ELM-free H-mode

◄ SP on LLD – TLLD < TLi-melt
◄ SP on LLD – TLLD > TLi-melt (+ other differences)
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• ELM characteristics:
• No ELMs, no  small, small  larger

• Impurities reduced, high bN sustained

bN > 4 sustained

• Chemistry of Li on C and Mo/LLD critical, complex, under-diagnosed 

• No evidence of Mo in plasma except from large ELMs, disruptions

Mo Tiles
(for 2011-12)

LLD

• Understanding roles of d/Li/Mo/ELMs 

motivates Mo tiles on inboard divertor
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Addition of IBD Mo tiles would

enable important divertor studies

• Help quantify fraction of core C coming from lower divertor for high-d shapes

• Potentially reduce C content of Li ELM-free scenarios

• Characterize Mo performance to inform choice of div/CS PFC in Upgrade

• Apply Li (LiTER) to IBD/OBD Mo for partial/full LLD

• If LLD present, LSN with both strike-points on Mo (how different than C?)

Standard divertor on C Snowflake on Mo

(also possible on C, 

not shown)

Standard divertor on Mo LSN strike-pts on Mo,

Mo + Li, or

C (IBD) + Mo (OBD)

(not shown)
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NSTX lithium research is an integral part of a program to 

assess viability of Li as a PFC concept for magnetic fusion

NSTX: Only diverted, 

NBI-heated tokamak 

studying Li at present.

LLD installed FY10. 

PFC test facility.

Materials analysis: 

NSTX probe, Purdue 

collaboration, modeling… 

NSTX 

Upgrade, 

Fusion 

next-

steps.

LTX now operating:

Li evaporated into 

helium glow ->

All-metal walled 

comparison to NSTX.

/1564

EAST / NSTX: Li collab. 

achieved H-mode !  
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NSTX is a world leader in investigating pumping capability & 
plasma effects of Li - including Liquid Lithium Divertor (LLD)

• 4 LLD plates formed ~20cm wide 

annulus in lower outboard divertor

– Heatable surface of porous 
molybdenum (Mo)

– Loaded with Li by LiTER 
evaporation from above

• No evidence of Mo in plasma except from large ELMs, disruptions

• Chemistry of Li on C and LLD critical, complex, and under-diagnosed 

• LLD did not increase D pumping  

beyond that achieved with LiTER

– C present on LLD may have 

impacted pumping performance

• Operating w/ strike-point on LLD 

may decrease core C content

– Strongest effect observed when 

plasma heats LLD surface above 

Li melting temperature 

– Interpretation complicated by 

ELMs in lower-d shape

LLD Impact on Plasma Performance:



NSTX FY2013 FES BPM – NSTX Program (Menard) April 11, 2011

ELMy H-mode combined with modest Li-wall conditioning 

can provide sufficient particle control for initial Upgrade ops

◄ NSTX long-pulse plasmas with 

ELMs approach density flat-top 

by t ~1s with ne / nGreenwald 1

• Modeling indicates ne / nGreenwald = 0.7-

0.9 likely required for 100% NICD

66

◄ Carbon Zeff = 2.5-3 acceptable, 

and will attempt to reduce 

further in FY11-12 research 

◄ Radiated power < 25% of NBI 

power, which is acceptable

bN = 5-6 sustained for ~1s – ready to assess 

stability at longer pulse-lengths in Upgrade  

Improved D pumping required to 

access ne / nGreenwald < 1 operating 

scenarios – will be part of longer-

term Upgrade research program
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• Constant deuterium fueling  for LLD 100% Li fill conditions, 4 plates air heated. 
• As LLD surface temperature transitioned from solid temperatures to the liquid regime, 

the plasma electron and deuterium content remain relatively constant.
• Core carbon C6+ content decreased - may be due in part to increased ELMing and 

edge turbulence.

• No systematic trend in D-alpha, wall inventory, or ion pumping with a transition 
above the Li melting temperature.

LLD pumping similar above or below Li melting temperature
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Full metal wall data from LTX shows thin liquid film 

reacts rapidly with residual/background gasses

• Hot (300 °C) shell with thin lithium coatings 

does not exhibit reduced recycling

– but strong lithium emission observed 

– relevant to NSTX LLD operation. 

 LTX is a full high temperature, high Z wall operation of a tokamak

• lithium evaporated into 5 mTorr helium fill to disperse coating.

 Deposition rate ~0.75 g/hour/evaporator

– 3 hour duration

– est. 1.6 micron average thickness.

 Thin liquid lithium coating darkened rapidly

– indicative of reactions with background 
gases or oxidized substrate

– no visual evidence of metallic surface.
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Lab analysis of NSTX exposed samples (Purdue U.)

• Modeling by the TBDFT code showed the 
probability for D to bond to a Li-C complex 
is 3 x larger than to C

• XPS O1s spectra show changes in surface 
chemistry with D irradiation of Li deposited on 
cold / hot / C contaminated Mo and graphite. 

• Suggests Li on Mo is interacting with D and 
diffusing into Li.  

XPS O1 spectra for the LLD samples
30 mins D2 irradiation of Li on:

/1569

Mo001: D2 on solid Li

Mo002: D2 on liq. Li 

deposited cold

Mo202: D2 on liq. Li 

deposited hot

Mo201: Sputtered C and 

D2 on liq. Li

O1s

ATJ203: D2 on Li 

on graphite

Deuterium saturation of Li
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MAPP probe will be installed for FY11-12

• MAPP is the first in-vacuo surface analysis 
diagnostic directly attached to a tokamak, 
capable of shot-to-shot chemical surface 
analysis of  material samples (solid Li, 
liquid Li, Mo etc). 

• MAPP will enable the correlation of PFC 
surface chemistry with plasma conditions 
and point the way to improved plasma 
performance. (R12-1)

/15

EFIT02 142512 @ 547 ms
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Backup

NSTX-MAST

Collaboration Opportunities
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1. Develop common understanding, 

vision, design of ST-based FNSF/CTF

• What is mission scope?

– Limited to test modules with small total surface area?

– Try for TBR = 1?

– Aim for net electricity production?

• What are wall loading requirements, assumptions?

– How does this drive assumed physics scenarios?

– How does this impact ongoing research on NSTX and MAST?

• What are best design, maintenance approaches?

– Sharing of engineering and design expertise most valuable

– Could be good project as Upgrade design activities reach closure
Resources needed: ~1-2 FTE total:  design, mechanical engineering, physics input
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J. Menard visiting Culham/MAST in April 2011 to share PPPL ideas, begin discussions



NSTX FY2013 FES BPM – NSTX Program (Menard) April 11, 2011

2. Collaborate on physics topics 

important to ST, FNSF, also ITER & Demo

• Steady-state, high performance scenarios

– Turbulent ion and electron transport

– Longer term – advanced divertors

• Energetic particle physics

– NBI current redistribution

• 3D physics

– Perturbed 3D equilibria

Discussions with MAST and NSTX physicists and managers 

Sep 2010 - Mar 2011 identified topics of mutual interest:
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Turbulent transport has important implications 

for size/design of ST as FNSF, and for ITER, Demo

• NSTX, MAST observe similar confinement scaling that differs from 

conventional A – strong ~ 1/n* scaling – what is underlying physics?

• Both devices now have similar ion turbulence diagnostics – 2D BES

• MAST expressed particular interest in PPPL/NSTX experiment-theory 

comparison expertise

• Potential collaborators:

• NSTX:  S. Kaye, D. Smith, Y. Ren, W. Guttenfelder

• MAST:  A. Field, C. Roach, M. Valovic

• GK theory:  G. Hammett, W. Dorland, C. Roach, A. Schekochihin, H. Wilson

MAST

2D BES to be used 2011

NSTX

Initial 2D BES data obtained 2010

( + existing high-k scattering )

A. Field visited NSTX in February 2011 to collaborate with D. Smith, S. Kaye on BES
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Advanced divertors will be needed for 

heat flux mitigation in Upgrades, FNSF, Demo

• MAST: effect of line-length on H-mode, NSTX: snowflake, LLD

• MAST-U: Super-X + cryos, NSTX-U: snowflake + Li pumping

• Both will access substantial flux expansion, variation of line-length, pumping

• Complementary:  open vs. closed divertor, different pumping techniques

• Will need advanced boundary control (example: control of multiple X-points)

• Potential collaborators:

• NSTX:  V. Soukhanovskii, R. Maingi, J. Canik, A. Diallo, D. Stotler, E. Kolemen

• MAST: G. Fishpool, A. Kirk, H. Meyer, G. Cunningham

MAST Upgrade
Conventional Super-X

Conventional Snowflake

NSTX, NSTX Upgrade
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Energetic particle transport has important 

implications for NBI-CD, alphas for FNSF, ITER BP

• NSTX, MAST observe multi-mode *AE, fast-ion transport  

• NSTX has FIDA, NPA, …  MAST has neutron collimator

• Both also have BES for *AE eigen-function measurement

• MAST expressed particular interest in improving models for 

“anomalous diffusion” from *AE (for TRANSP analysis)

• Potential collaborators:

• NSTX:  E. Fredrickson, M. Podesta, G. Kramer, G. Fu, A. Bortolon

• MAST: R. Akers, S. Pinches, M. Turnyanskiy

NSTX MAST
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Improved 3D plasma response models needed 

to understand RMP ELM suppression for ITER, FNSF

• MAST, NSTX modify edge transport and ELMs with 3D fields
• Have not yet suppressed ELMs with 3D fields

• Both observe transport/plasma response to 3D fields sensitive to q95

• MAST, NSTX have complementary 3D coil capabilities

• Collaboration initiated on perturbed equilibria, NTV rotation damping
• US:  DCON, IPEC codes  resistive DCON, GPEC code,  UK:  MARS, T7 

• Collaborators:
• U.S.:   J.-K. Park + A. Glasser,  A. Boozer, S. Sabbagh

• Culham/UK:  I. Chapman, Y. Liu, C. Gimblett, H. Wilson

MAST – in-vessel off-midplane RMP coils NSTX – ex-vessel mid-plane RMP coils
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Park and Glasser visited Culham in September 2010 to collaborate on plasma response models


