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Tokamaks are sensitive to deviations from axisymmetry as small as �B /B0�10−4. These
nonaxisymmetric perturbations greatly modify plasma confinement and performance by either
destroying magnetic surfaces with subsequent locking or deforming magnetic surfaces with
associated nonambipolar transport. The Ideal Perturbed Equilibrium Code �IPEC� calculates ideal
perturbed equilibria and provides important basis for understanding the sensitivity of tokamak
plasmas to perturbations. IPEC calculations indicate that the ideal plasma response, or equivalently
the effect by ideally perturbed plasma currents, is essential to explain locking experiments on
National Spherical Torus eXperiment �NSTX� and DIII-D. The ideal plasma response is also
important for neoclassical toroidal viscosity �NTV� in nonambipolar transport. The consistency
between NTV theory and magnetic braking experiments on NSTX and DIII-D can be improved
when the variation in the field strength in IPEC is coupled with generalized NTV theory. These
plasma response effects will be compared with the previous vacuum superpositions to illustrate the
importance. However, plasma response based on ideal perturbed equilibria is still not sufficiently
accurate to predict the details of NTV transport and can be inconsistent when currents associated
with a toroidal torque become comparable to ideal perturbed currents. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3122862�

I. INTRODUCTION

Tokamaks confine toroidal plasmas in a magnetic field
that is almost axisymmetric. However, a significant degrada-
tion of performance in tokamak plasmas is observed for non-
axisymmetric magnetic perturbations as small as �B /B0

�10−4.1–6 Tokamaks are difficult to build without such small
errors. Interestingly, such a small magnetic nonaxisymmetry
can be beneficial. Recent experiments on edge localized
modes �ELMs� have shown that nonaxisymmetry as small as
�B /B0�10−4 can eliminate or modify ELMs,7–9 which is
critical for avoiding severe damages to plasma-facing com-
ponents. These observations indicate that tokamaks are very
sensitive to small nonaxisymmetric perturbations and thus
must be controlled at the �B /B0�10−4 level for optimal to-
kamak plasma performance.

A standard approximation is to superpose a nonaxisym-

metric external field �B� x onto the B� 0 of an axisymmetric
tokamak equilibrium. This approximation essentially as-

sumes that the plasma response, or equivalently the field �B� p

from perturbed plasma currents, is much smaller or at most

comparable to the external field �B� x driven by external cur-
rents. This assumption often fails and thus the field due to

perturbed plasma currents �B� p must be included in the total

field, �B� =�B� x+�B� p. The magnetic field due to the plasma
response can either amplify or shield the external field and is
essential for understanding the sensitivity of tokamaks to
small nonaxisymmetric perturbations.

The plasma response to external perturbations can be
understood based on three dimensional plasma equilibria.
The external perturbations change slower than Alfvén time,
which is time scale for the relaxation to an equilibrium. In
three dimensional equilibria, the nested magnetic surfaces
are nonaxisymmetrically deformed, or destroyed by the
opening of magnetic islands near the rational surfaces. If
islands exist, however, plasma rotation slows and can lock to
the islands via multiple mechanisms,10–14 which often leads
to a plasma disruption. The destruction of magnetic surfaces
by external magnetic perturbations must be negligibly small
in the bulk of the plasma. Before the onset of the significant
islands and plasma locking, the distortion of the plasma by
external magnetic perturbations can be effectively described
by ignoring the islands at the rational surfaces. This is con-
sistent with the constraints in ideal magnetohydrodynamics
�MHD�, which do not allow topological changes in magnetic
field such as magnetic islands. Therefore, the fundamental
and the practically important level of understanding for the
plasma response can be achieved by studying ideal perturbed
equilibria.

In an ideal perturbed equilibria, there are two important
consequences,15,16 �1� parallel currents shield the normal
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resonant field �Bmn at the rational surfaces, which is driving
the opening of an island, and �2� the deformation of magnetic
surfaces causes nonambipolar transport17–22 due to the sym-
metry breaking of the magnetic field strength �B�. In particu-
lar, toroidal torque by nonambipolar transport is associated
with neoclassical toroidal viscosity �NTV�.14,23–25

This paper will describe the calculations of ideal per-
turbed equilibria �Sec. II�, give a brief review of its applica-
tions to plasma locking through �Bmn �Sec. III�, and to the
NTV torque through nonaxisymmetries in �B� �Sec. IV�.
Comparisons will be made with the vacuum superposition
approximations to show the importance of the plasma re-
sponse. The plasma response based on ideal perturbed equi-
libria, however, is valid only for an-order-of-magnitude pre-
diction for NTV torque and is not fully self-consistent. Both
�Bmn and nonaxisymmetries in �B� cause a toroidal torque,
but the currents associated with a toroidal torque are not
included in ideal perturbed equilibria. This will be briefly
discussed �Sec. V�.

II. IDEAL PERTURBED EQUILIBRIUM

The Ideal Perturbed Equilibrium Code �IPEC�,26 which is
based on the DCON �Ref. 27� and the VACUUM �Ref. 28� sta-
bility codes, solves free-boundary ideal perturbed equilibria
preserving the pressure p��� and the safety factor q��� pro-
files. The fixed q��� profile means that no topological
changes in magnetic field lines are allowed, so magnetic is-
lands are always shielded. IPEC solves the perturbed force
balance equation,

F� = 0� = �� �p − �j� � B� 0 − j�0 � �B� , �1�

with the constraint at each q=m /n rational surface that the
resonant magnetic perturbation vanishes,

�mn =
1

�2��2� d�� d�J�B� · �� �e−i�m�−n�� = 0, �2�

where J is the Jacobian of magnetic coordinates �� ,� ,��.
This constraint eliminates magnetic islands at the rational
surfaces and produces a jump in the tangential field across
the rational surfaces. The surface current associated with this
jump gives, within a sign, the resonant magnetic perturbation
that is trying to drive an island.

The external boundary conditions are given by the exter-

nal perturbation, �B� x · n̂b, normal to a control surface, or
equivalently to the plasma boundary. As described in detail
in Ref. 26, the total normal field on the plasma boundary can

be determined as �B� · n̂b= P̂��B� x · n̂b� with a permeability op-

erator P̂. IPEC uses virtual surface currents to construct the
permeability operator and gives the total normal field on the
boundary surface as well as all the components of the total

perturbed field and displacement, ��B� �x�� ,���x���, which in-
clude the plasma response throughout the plasma volume.

Perturbed plasma currents including shielding currents at
the rational surfaces can often significantly modify the pen-
etration of the field. This can be easily illustrated with a
cylindrical and force-free �or zero pressure, p=0� example.
Consider a cylindrical plasma with the q=2 resonant surface

at r /a�0.83 with a minor radius. The plasma is enclosed by
a conformal wall located at r /a=1.2 and the external pertur-
bations are specified by external currents in this wall. A per-
turbed equilibrium without the plasma can be obtained using
vacuum superposition and a perturbed equilibrium with the
plasma can be obtained using IPEC. Also, one can obtain a
perturbed equilibrium with the plasma using the cylindrical
force-free equilibrium equation. The perturbed magnetic

field for the cylindrical plasma is written as �B� =�� �A� � ẑ

= r̂�1 /r����A� /�	�− 	̂���A� /�r�. With a perturbation �A�

=�A� cos�m	−nz /R�, the perturbed equilibrium is29

1

r

d

dr
	r

d�A�
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 −

m2�A�

r2 =
q

r

m

m − nq

d

dr
�K��A� , �3�

given a current profile K�r�=
0j��r� /B0. A simple numerical
routine, cylinder forcefree, was developed to solve Eq. �3�.

Figure 1 shows each �m=2, n=1� perturbed equilib-
rium in terms of the normal field using vacuum superposi-
tion, IPEC and cylinder force-free. The IPEC case is obtained
for a near cylindrical ���a /R=0.1� and near force-free
��N��t / �aBT0 / Ip�=0.1, where �t is the toroidal �, BT0 is the
toroidal field at the magnetic axis, and Ip is the plasma cur-
rent� plasma. From Fig. 1, one can see that the IPEC solution
using virtual surface currents is almost identical to the cyl-
inder force-free solution inside the plasma. The benchmark
of the IPEC solution in the cylindrical limit has been done in
this way. Compared to the vacuum superposition, the ideally
perturbed equilibrium �by either of the IPEC or the cylinder
force-free solution� shows a fundamental difference in the
penetration of the field. The normal field is completely
shielded inside the resonant surface and the jump in the de-
rivative of normal field implies the existence of currents
shielding the resonant magnetic field. Also, perturbed plasma
currents including these shielding currents significantly
change the profile of the magnetic field compared to the
vacuum magnetic field.

m=2, n=1 perturbation in a cylinder
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FIG. 1. �Color� The normal field �B21 as a function of the radius in a
perturbed cylindrical force-free plasma. Each solution is obtained using
vacuum superposition �vacuum�, cylindrical force-free equation �cylinder
force-free�, and IPEC with virtual surface currents �IPEC�. Cylinder force-free
and IPEC give the almost identical solution inside the plasma and show
significant shielding. r /a�0.83 is the q=2 resonant surface �dash� and
r /a�1.2 is the wall.
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Amplification instead of shielding can also be easily
found in the cylindrical force-free example. Figure 2 illus-
trates the solutions for this case using vacuum superposition,
IPEC, and cylinder force-free by applying �m=3, n=1� ex-
ternal currents at the wall. Since the resonant q=3 surface is
close to, but outside the plasma boundary �r /a�1.04�,
plasma is close to instabilities associated with �m=3, n
=1� perturbation and the energy required to perturb plasma is
very small.30 In addition to shielding and amplification, to-
kamak plasmas have strong toroidicity, and thus strong po-
loidal harmonic coupling. This coupling can also greatly
change the perturbed field and displacement from what
would be expected from vacuum superposition.

III. DESTRUCTION OF FLUX SURFACES
AND PLASMA LOCKING

The inclusion of plasma response gives a correct physi-
cal interpretation for a locking. When plasma is almost ideal
before the onset of a locking, magnetic islands are sup-
pressed by shielding currents at the rational surfaces. How-
ever, there is an upper limit of perturbation amplitudes,
where the electromagnetic torque becomes too strong for a
rotating plasma to maintain the shielding currents. This is
often called error field penetration.10–13 The balance between
the electromagnetic torque by shielding currents and the vis-
cous torque by plasma rotation is determined by the inner-
layer dynamics, but shielding currents must be determined
from the outer layer, or equivalently a perturbed equilibrium.
IPEC gives shielding currents before the balance is lost and
thus when islands can be ignored.

The shielding currents give the resonant field driving
magnetic islands, which can be called the total resonant field
�Bmn at q=m /n, compared to the external resonant field
�Bmn

x obtained by vacuum superposition. The total resonant

field can be obtained using �� �B� =
0j�s with the shielding
current j�s, which suppresses the total resonant field. The ex-

ternal resonant field penetrates without distortions by per-
turbed plasma currents and thus can be directly obtained by
the resonant component of the field at the rational surfaces.

The total and external resonant fields would be linear if
the applied field spectrum is fixed and can even be very
similar in the cylindrical force-free plasmas. However, the
relation is more complicated in tokamak plasmas, because of
shielding or amplification and poloidal harmonic coupling.
Experiments have found that the critical amplitudes of the
external field or the external current are approximately linear
with locking densities,1–6 and also some theories expected
the positive correlation between the critical field and the
locking density.10–13 However, the approximation of the ex-
ternal resonant field for the resonant field driving islands has
been often unsuccessful to find the correlation. An alternative
method such as three-mode coupling scheme3,4 has been
proposed to account for poloidal harmonic coupling, but re-
cent error field correction �EFC� experiments in National
Spherical Torus eXperiment �NSTX� �Ref. 31� and DIII-D
�Ref. 32� have shown the irrelevance of such vacuum
approximations.33

IPEC applications to the intrinsic error correction high-
lighted the importance of the total resonant field and thus in
general the importance of the plasma response. As shown in
Ref. 33 and Figs. 3 and 4, consistent correlations were re-
stored between the total resonant field and the locking den-
sity for the cases where the external resonant field showed no
correlations or even opposite results in both NSTX and
DIII-D. Also, the correlations among the total resonant field
�Bmn ��B21 and �B31 in Fig. 4� at different rational surfaces
imply that the plasma response is sensitive to a particular
external field.33,34 However, the estimations of the total reso-
nant field have been improved from Ref. 33 as explained in
the following paragraphs.

m=3, n=1 perturbation in a cylinder
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FIG. 2. �Color� The normal field �B31 as a function of the radius in a
perturbed cylindrical force-free plasma. As Fig. 1, each solution is obtained
using vacuum superposition �vacuum�, cylindrical force-free equation
�cylinder force-free�, and IPEC with virtual surface currents �IPEC�. Cylinder
force-free and IPEC give the almost identical solution for plasma and show
substantial amplification throughout plasma. r /a�1.04 is the q=3 resonant
surface �dash� and r /a�1.2 is the wall.
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FIG. 3. �Color� The expected resonant field using EFC n=1 correction
��300 A� for NSTX intrinsic error field as a function of different toroidal
phases of the correction field �equilibrium for IPEC analysis: #116132,
�N�0.4�. The blue region indicates the experimentally known optimal
phase of n=1 correction. The external resonant field in magnetic coordinates
with an ordinary toroidal angle �PEST �B21

x �, the weighted external resonant
field ��B21

x �, and the weighted total resonant field ��B21� are shown and
compared. Note the opposite results by the PEST �B21

x .
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The first issue comes from the magnitude of the resonant
field �Bmn or �Bmn

x depending on the choice of magnetic
coordinates. The difference can often be large as shown in
Ref. 35, but a physical quantity such as the size of magnetic
islands must be invariant. Nevertheless, it is still useful to
represent a physical quantity by a relevant number of Gauss
and so one can define the weighted total �external� resonant
field as

�Bmn
�x� =

� e−i�m�−n���B� · da�

� da
, �4�

where da� is the surface area vector normal to the rational

surface and da� =d�d�J�� �. This definition makes the reso-
nant component, m /n=q, independent of the choice of mag-
netic coordinates. Even though the number of Gauss of the
weighted resonant field is not an amplitude of an actual mag-
netic field, the weighted resonant field is directly propor-
tional to 
2, where 
 is the size of an island.29,35 If one uses
Fourier decomposition for the total �external� resonant field
in magnetic coordinates as

�Bmn
�x�,Coord =

1

�2��2� � e−i�m�−n����B� · n̂�d�d� , �5�

then this quantity can include nonresonant components that
are irrelevant for islands. Here the superscript Coord indi-
cates a set of magnetic coordinates and so-called PEST
coordinates36 will be used for comparison. PEST coordinates
are easy in practice since they are based on an ordinary tor-
oidal angle �=�.

Figure 3 shows the revised analysis of NSTX n=1 cor-
rections in Ref. 33 using the weighted �B21, �B21

x , and
�B21

x,PEST. The blue box indicates the empirically determined
optimal toroidal phase of n=1 correction field by EFC coils
to mitigate a locking37 and thus one would expect the re-
duced resonant field at the optimal phase. However, the ex-
ternal resonant field in PEST magnetic coordinates �B21

x,PEST

can give the opposite results as shown in Ref. 33. When one
calculates the weighted external and total resonant field, �B21

x

and �B21, the results become consistent. The total resonant
field was consistent in Ref. 33, where the results were based
on Hamada coordinates38 �B21

Hamada, even without the weight-
ing factor since it used the shielding currents j�s that are in-
dependent of magnetic coordinates. Nonetheless, the total

resonant field given by �� ��B� =
0j�s also must be repre-
sented by the weighted form as shown in Fig. 3.

The NSTX examples show that the weighted �Bmn
x may

approximate the weighted �Bmn. However, DIII-D n=1 cor-
rections showed that the weighted �Bmn

x can differ greatly
from the weighted �Bmn in Fig. 4. Here the same experiments
in Ref. 33 are presented, but with the weighted �Bmn. In
addition, Fig. 4 has more corrections. IPEC calculation uses

�B� · n̂b= PJ��B� x · n̂b� on the plasma boundary in a chosen sys-
tem of magnetic coordinates based on Eq. �5�, but the previ-
ous analysis33 used the spectrum of the weighted external
field on the boundary based on Eq. �4� in PEST coordinates.
This weighted spectral analysis has been used in DIII-D
since 2004 to obtain the invariant resonant field for islands.39

Although the weighted resonant field is invariant, other
weighted components depend on the choice of magnetic
coordinates.35 The revised calculations in Fig. 4 removed the
weighting factor on the boundary to have the correct inter-

face through �B� · n̂b= PJ��B� x · n̂b� in IPEC. Also, it is found that
IPEC results can be unreliable when an internally unstable
q=1 surface exists, so the q=1 surfaces close to the mag-
netic axis are ignored by enforcing q0�1 at the magnetic
axis in the given axisymmetric equilibria. Note that amplifi-
cation is not as strong as the previous report in Ref. 33.

The confusion between the spectra of the field in Eqs.
�4� and �5� occurred because they became identical in a cyl-
inder for all the components in any of the set of magnetic
coordinates. However, the differences are large in tokamak
plasmas, so it is important to use the weighted form to obtain
the correct resonant component of the field. The weighted
external resonant field �Bmn

x includes some geometrical po-
loidal coupling, so it can improve the prediction based on
vacuum approximation, as shown in Fig. 3. It may be similar
to the previous method using the three-mode coupling
scheme3,4 based on the external resonant field �Bmn

x,PEST. How-
ever, these vacuum approximations can be still inaccurate by
neglecting the plasma response, that is, the contribution of

the field by perturbed plasma currents �B� p, as demonstrated
in Fig. 4. The plasma response can be given by ideal per-
turbed equilibria, but one must ensure no internal instabilities
to trust the results. The internal instabilities can be avoided
by better reconstruction of axisymmetric equilibria, but it
should be resolved in the future how to treat the intrinsically
unstable surfaces such as q=1 in perturbed equilibria.

2004~2006 DIII-D n=1 correction
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FIG. 4. �Color� The revised figure from Fig. 3 in Ref. 33 for the critical field
vs locking density with the various n=1 DIII-D error field corrections, based
on the weighted total �external� resonant field �Bmn

�x� . From the left, it is
shown that I+M, C+M, M �equilibrium for IPEC analysis: #124995, �N

�0.5� in 2006 DIII-D experiments, and M, I+C+M, I+M in 2004 DIII-D
experiments �equilibrium for IPEC analysis: #117380, �N�0.5�, respectively.
I is I-coil correction, C is C-coil correction, and M is Machine error, which
is different for 2006 and 2004. The unstable q=1 surface close to the mag-
netic axis is ignored. The weighted external resonant field �Bmn

x is compared
with the weighted total resonant field �Bmn at q=2 /1 and q=3 /1 rational
surfaces. Note that the roughly linear correlation of locking density is re-
stored with �Bmn compared to almost no correlated data with �Bmn

x .
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IV. DEFORMATION OF FLUX SURFACES
AND NTV TRANSPORT

As another important consequence by nonaxisymmetric
perturbations, the deformed magnetic surfaces and the dis-
torted trajectories of particle orbits produce so-called nonam-
bipolar transport.17–22 Ions typically diffuse faster and result-
ing net radial currents produce toroidal torques that relax the

E� �B� rotation to an ambipolar level. Therefore, the nonam-
bipolar transport causes rotational damping and the associ-
ated viscosity is often called NTV.14,23–25 When nonaxisym-
metric magnetic perturbations are applied to change the
toroidal rotation, it is called NTV magnetic braking40,41 of
rotation in experiments.

A. Variation in field strength

There are various theoretical predictions for NTV that
can be compared with experimental damping rates of rota-
tion. Any evaluation requires knowledge of the variation in
the field strength B= �B� and thus the calculation of perturbed
equilibrium. This can be understood by considering the ac-
tion of a trapped particle with given energy H and magnetic
moment 
 as

J =� Mv�dl�� 
H − 
�B�dl , �6�

where M is the mass of a particle. The action must be con-
served for a particle, but the action depends on the toroidal
location of the turning points of a trapped particle if B is not
axisymmetric. Hence, a trapped particle must drift radially to
conserve the action while it precesses toroidally.

The nonaxisymmetry in B must be evaluated along the
true magnetic field lines dl, which means along perturbed
magnetic field lines. The variation in B along the perturbed
magnetic field lines is called the Lagrangian variation in the
field strength and is given by16

�LB = �EB + �� · �� B0. �7�

On the other hand, the Eulerian variation at fixed points in
space is

�EB = �B� · b̂0. �8�

The vacuum approximation uses the Eulerian variation, but
based on the external field instead of the total field, that is,

�EBx = �B� x · b̂0. �9�

The difference of two Eulerian evaluations, �EB and
�EBx, depends on plasma response. When plasma response is
weak, the two estimations may give roughly similar varia-
tions even though the actual field structure will be largely
distorted by perturbed plasma currents, as can be seen in
Figs. 1 and 2. However, the correct variation in the field
strength for Eq. �6� is not either of them, but is the Lagrang-
ian variation given by Eq. �7�.

The Lagrangian �LB is typically larger than the Eulerian
variation since it is dominantly determined by spatial varia-

tions in B0�1 /R seen in displaced magnetic field lines by ��.

The example is shown in Fig. 5, where n=1 field with a
typical current �1 kA using EFC coils �or called resistive
wall mode �RWM� coils� is applied to a NSTX plasma. A
moderate �N=1.0 case is chosen to suppress a large amplifi-
cation, as one can see from that �EB is roughly similar to
vacuum approximation �EBx. Although plasma amplification
can be ignored in this example, one can still find that the
Lagrangian variation is larger than the vacuum approxima-
tion by an order of magnitude. In practice, vacuum approxi-
mation gives �EBx /B0�10−4 and the Lagrangian evaluation
including plasma response gives �LB /B0�10−3. If the ap-
plied field is close to a marginally stable mode, the Lagrang-
ian evaluation can give even larger amplitudes. NTV trans-
port is proportional to �LBmn

2 , so an order of magnitude
change in �LBmn gives a two order of magnitude change in
the NTV.

The Lagrangian �LB in IPEC can provide relevant predic-
tion for the variation in the field strength, however, a singu-
larity exists in the narrow region around the rational surfaces.
This arises because the tangential displacement is determined

by �� ·�� =0 and gives �� ��� ·��� / �m−nq�. This is the feature
of ideal perturbed equilibria and can be kept if the evaluation
for only a local torque is desired. However, the singularity
needs to be removed for the evaluation of the total toroidal
torque. IPEC alters the tangential displacement as42

�� �
m − nq

�m − nq�2 + �2�� · ���, �10�

introducing a small parameter �, which can be reasonably
taken as �g�−n�dq /d��
�g with 
�g given by an ion gy-
roradius. The integration and the total torque are not sensi-
tive to variations of �, if ���g within an order of magni-
tude, since only the very narrow region around the rational
surfaces is affected by the small parameter. Although the
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FIG. 5. �Color� Comparison for the radial profiles of one component
�m=1, n=1� of the nonaxisymmetric variation in the field strength between
Eulerian vacuum ��EBx�, Eulerian IPEC ��EB�, and Lagrangian IPEC ��LB�
evaluations. The calculation is done with a typical n=1 RWM coil current
��1 kA� to a moderate �N=1.0 NSTX plasma, so plasma amplifications are
not strong in this example. However, Lagrangian variation is still larger than
other two Eulerian variations.
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singularity can be removed with the small parameter, the
peaks around the rational surfaces as seen in Fig. 5 may be
nonphysical. This is the consequence of the non-self-
consistency in ideal perturbed equilibria, which will be
briefly discussed later.

B. Theoretical prediction of NTV braking

The variation in the field strength �LB given by IPEC can
be used to evaluate NTV torques and rotational damping
rates. NTV transport has been studied by a number of au-
thors. In particular, Shaing calculated various asymptotic
limits in perturbed tokamaks including multiharmonic
perturbations.14,23–25 It has been known that there are two
main regimes, the 1 /� regime24 when �E�� and the �−


�

regime25 when �E��, where �E is the toroidal precession
angular frequency and � is the collisional frequency. Al-
though the calculations are more realistic than the previous
calculations with a single harmonic perturbation, it is still
difficult to apply the results to tokamaks since the calcula-
tions in different asymptotic limits differ by several orders of
magnitude as they switch from one regime to another. Also,
the precession rates are strong enough for neutral beam in-
jection �NBI�-heated tokamaks to give resonances with
bouncing motion of trapped particles. Therefore, a general-
ized formula has been derived to include precession and
resonance effects and combine different regimes.22 The reso-
nance effects between the electric precession and the bounc-
ing orbits have been calculated in Ref. 21 for a single har-
monic perturbation, but the generalization in Ref. 22
includes multiharmonic perturbations and combines different
regimes using an effective collisional operator. Including the
general formula, here, two evaluations in the asymptotic lim-
its for the 1 /� regime and the �−


� regime are also summa-
rized for comparison.

The NTV torque can be conveniently expressed by the

flux-averaged toroidal force density, ����� ·�� ����̂ ·�� ·�J a�
for species a, where �̂ is the unit vector of ordinary toroidal
angle. Dropping the species a subscripts, each evaluation
gives

�1/�
� =

�3/2pu1/�
�


2�3/2R0

�i

�
�

0

1

d�2�w,1/�
2 , �11�

��−

�

� =
�−1/2pu�−


�
�


2�3/2R0

�i

�E
2�

0

1

d�2�w,�−

�

2 , �12�

��
� =

�1/2pu�
�


2�3/2R0
�

0

1

d�2�w,�
2 �

0

�

dxR1,�, �13�

for 1 /�, �−

�, and general formula, respectively. The R0 is

the major radius at the magnetic axis and the parameters are
�i=13.718 and �i=0.354.24 The �w

2 is the square of variation
in the field strength with different weighting factors for dif-
ferent harmonic perturbations.

�w,1/�
2 � �

nmm�

�nmm�
2

n2Fnm0
1/2 Fnm�0

1/2

E��� − �1 − �2�K���
, �14�

�w,�−

�

2 � �
nmm�

�nmm�
2 �E��� − �1 − �2�K����
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��2
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��2 +
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��2
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 , �15�

�w,�
2 � �

nmm�

�nmm�
2

n2Fnm�
−1/2Fnm��

−1/2

4K���
, �16�

where K��� is the elliptic integral of the first kind, E��� of
the second kind, and

�nmm�
2 = Re��nm�Re��nm�� + Im��nm�Im��nm�� , �17�

with the field model

B = B0�1 − � cos �� + B0	�
nm

�nmei�m�−n��
 . �18�

Each function is defined as

Fnm�
y � �

−�t

�t

d���2 − sin2��/2��ycos�m − nq − ���� ,

�19�

Lnmc �
Fnm0

−1/2

2K���
�1 − cos�
n��e−
n�� , �20�

Lnms �
Fnm0

−1/2

2K���
�sin�
n��e−
n�� , �21�

with the turning point �t�2 arcsin���, the sign function �
that is +1 for corotating case, and the stretch variable related
to the width of layer for 
� regime,25

� = �1 − �2�	 ln�16/
4�/��E�
4�/��E


1/2

. �22�

The resonant term in Eq. �13� is given by

R1,� =
1

2

�1 + 	�

2

2� �

2�
xe−x

���b − n��E + �B��2 + �	1 + 	�
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.

�23�

Here the normalized variables �x ,�2� are used instead of
�E ,
� as x�E /T and �2��E−
B0�1−��� /2
B0�. The
bounce frequency �b and the magnetic precession �B are
functions of �x ,�2�, but one can use further approximations
by making them as functions only of x. The approximations
are

�b =
�
�

2
2
�t


x

K���
�

�
�

4
2
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x , �24�

�B = �
q3�t

2

2��g
x

F010
−1/2���
4K���

� �
q3�t

2

4��g
x , �25�

where the transit frequency �t=vt /qR0 with the thermal ve-
locity vt= �2T /M�1/2, and the gyrofrequency �g=eB /M. The
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torque is proportional to the toroidal flow u�=u� ·�� � with an
offset by the neoclassical flow,

uN
� � u� + CN��1

e

dT

d�
� , �26�

where � is the poloidal flux function. The constants for each
regime are C1/��3.5, C�−


��0.92, and C��2.0.
The general formula in Eq. �13� with �=0 approximates

well the 1 /� asymptotic limit in Eq. �11� when �E+�B→0
and also roughly approximate �−


� asymptotic limit in
Eq. �12� when �→0, although it can underestimate the
effects of nonresonant harmonic perturbations. In order to
correct the underestimation, one takes a maximum
��=max�� ���

� ,��−

�

� �. However, the present formula for �−

�

in Eq. �12� is highly sensitive to the width of the layer in Eq.
�22�, which largely changes throughout the plasma volume.
The underestimation is not so large unless � is smaller than
103 /s,22 so here the general formula in Eq. �13� with �=0 is
used to approximate �−


�. Since �=0 means the rough con-
nection between the 1 /� and the �−


� regime, it can be
called 1 /�−� evaluation. Also, the inclusion of all � bounce
harmonics dominates �−


� in most cases, the evaluation us-
ing the general formula can be made by ��=max�� ���

�� on
each flux surface, or simply by ��=���

� since only one of ��
�

is largely dominant on a flux surface.
Equations �11�–�26� can be used only for approximations

due to the following limitations: �1� The evaluations take
only trapped particles into account since the effects by pass-
ing particles are expected to be weaker than trapped par-
ticles. This can be checked by comparing the 1 /� evaluation
for trapped particles and the collisional23 or plateau43 evalu-
ations for passing particles,40 when precession or resonance
are ignored. However, a systematic evaluation for the effects
of passing particles in the presence of the precessions has not
been done yet. �2� The field model in Eq. �18� ignores a
high-order shaping terms of plasmas assuming a high aspect-
ratio circular tokamak. Although the model can describe ef-

fectively the width and the depth of magnetic wells, present
tokamaks typically have strong shaping and so NTV evalua-
tions can be inaccurate especially in the edge. Also, the use
of the simplified �b or �B as only a function of the energy x
can be inaccurate for the resonant term in Eq. �23�. These
simplifications are used for an order of magnitude estimation
without computationally demanding process, since �3� the
analytic treatment anyway cannot exactly describe compli-
cated dynamics of trapped particles that may lead to stochas-
tic transport.19 These limitations have to be resolved by nu-
merical evaluations, for instance, using �f code, in the
future.

C. Experimental measurement of NTV braking

Equations �11�–�26� give various expressions for the to-
roidal torque, which can be compared with experiments.
While making comparisons between theory and experiment,
it is convenient to use rotational damping rates as

�damp �
��

u�R0MN
, �27�

where N is the density of a species.
Figure 6 shows n=3 magnetic braking experiments per-

formed in NSTX. The two shots have almost identical plas-
mas, run in lower single null configuration, with elongatation
as high as �=2.3, with Ip=800 kA �Fig. 6�a�� and BT0

=0.45 T. The electron densities are similar to each other
�Fig. 6�b��. For one of these shots, n=3 braking field is ap-
plied using EF/RWM coils in NSTX with a current of 600 A
for each �Fig. 6�c��. One can see from �b� that the amplitude
of the braking is low enough not to significantly change the
particle confinement. However, a clear change was made in
momentum confinement.44 The plasma rotation reached up to
20–30 kHz in the early period by 6 MW NBI and settled
down to similar rotational equilibrium as shown in Fig. 6�d�.
However, when the braking field is fully applied at t
=500 ms, the toroidal rotation starts to damp and relaxes to
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FIG. 6. �Color� Magnetic braking experiments in
NSTX. Time evolutions for �a� plasma current, �b� elec-
tron density, �c� n=3 RWM coil current, and �d� toroi-
dal rotation are shown for plasmas with �red� and with-
out �black� magnetic braking.
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a different rotational equilibrium. This example indicates that
the nonambipolar transport by nonaxisymmetric field can
produce a strong momentum transport, but the particle con-
finement is not significantly modified.

The use of a reference shot in magnetic braking is im-
portant to discriminate the effects by the nonambipolar trans-
port. The change in toroidal rotation is determined not only
by the nonambipolar transport with perturbations, but also by
various sources including the turbulence-driven momentum
transport45 and the input torque by NBI. The momentum bal-
ance equation can be roughly written as

MN
�u�

�t
= ��̂ · �j� � �B� � − ��̂ · �� · �J �

+
�

��
	MN��

�u�

��
− MNupinchu�
 + S , �28�

for the time evolution of the toroidal rotation u�=u� · �̂, where
� is an effective minor radius. The first term in the right hand
side is the torque at the rational surfaces due to the shielding
currents and is related to locking. The second term is the
nonambipolar torque given by magnetic braking. The third
term includes a diffusive process ���� of the transport and a
pinch �upinch�,45 both of which can include classical, neoclas-
sical, and turbulence driven momentum transport. The last
term represents the torque due to heating sources by NBI.
The best way to discriminate the second term in experiments
is to use a reference shot that can be subtracted from a mag-
netic braking shot. The plasma condition must be almost
identical and one must determine the damping in a short time
period, otherwise the different rotation rate can modify other
terms in Eq. �28�. When the time period is short, the expo-
nential decay of the rotation to a new rotational equilibrium
can be linearized. In NSTX, the experimental rotational
damping rates are measured in this way. The time period is
as short as �50 ms, beyond which the linear behavior can-
not be assumed.

Figure 7 shows the evolutions of the rotation mapped on
the flux surfaces, with and without n=3 magnetic braking.

One can see the profile of the toroidal rotation is almost
identical before the magnetic braking �t=500 ms�, but
evolves differently after the magnetic braking, so one can
subtract �a� from �b� to obtain the damping purely driven by
the braking. In this example, the rotation does not evolve
very much without the braking, but this is not seen for all the
cases, and it is better to find and use an identical reference
shot.

There are other issues in the comparison with the ob-
served damping rates. The toroidal rotation in NSTX �and
DIII-D� is measured by charge exchange recombination
spectroscopy �CHERS� based on carbon impurities. Here it
will be assumed that the CHERS measurement represents the
toroidal rotation of the main ions, as is commonly assumed
in experiments. However, since a certain amount of time is
required to achieve the equilibration between carbon ions
and main �deuterium� ions, a damping seen by CHERS can
have smoother profiles than the immediate response of the
main ions. These effects are ignored in our study, but should
be addressed.

D. Comparison between theory and experiment

The measured damping rates purely by the magnetic
braking can be compared with the NTV calculations using
the IPEC field. There have been different methods, for in-
stance, using a 1 /� regime and the external �vacuum� field,
which have been often successful to approximate the ob-
served damping rates in NSTX.40 Here three additional phys-
ics are included to improve the consistency between theory
and experiment:

�a� Toroidal precession rates ��p=�E+�B�, which are of-
ten faster than the collisional rates ���.

�b� The bouncing orbits of trapped particles can resonate
with the precessions, that is, ��b�n�p.

�c� Variation in field strength along the perturbed magnetic
field lines, that is, �LB, including plasma response is
substantially different from vacuum approximation
�EBx.

As in the Fig. 8, one can obtain different results if

�1� �a�, �b�, and �c� are all ignored: vacuum 1 /�,
�2� �a� is only included: vacuum 1 /�−� ��=0�,
�3� �a� and �b� are included: vacuum general �all ��, and
�4� �a�, �b�, and �c� are all included: IPEC general �all ��.

The evaluation assuming 1 /� regime based on vacuum
approximation can be close to measurement �vacuum 1 /�� as
presented in Ref. 40. However, the inclusion of the strong
precession gives too small damping rates �vacuum 1 /�−��
even if the method is more consistent with theory, unless the
bounce-harmonic resonances �vacuum general� and the true
variation in the field strength are considered �IPEC general�.

Figure 8 shows that the general NTV including bounce-
harmonic resonances coupled with �LB can significantly im-
prove the consistency between theory and experiment, but
also shows that the accuracy is still not sufficient to predict
the detailed profile of damping rates. Figure 9 showed other
comparisons for the damping rates between measurements
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FIG. 7. �Color� Comparison of the evolution of the rotational profile
mapped on the flux surfaces �a� without magnetic braking and �b� with n
=3 magnetic braking, for the plasmas in Fig. 6

056115-8 Park et al. Phys. Plasmas 16, 056115 �2009�

Downloaded 18 Jun 2009 to 198.35.3.144. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



and NTV calculations in NSTX and DIII-D experiments.
One can see that predictions are valid only within an order of
magnitude. The investigated shots in Fig. 9 are not so differ-
ent from each other in both devices, but the predictions can
show easily an-order-of-magnitude difference, as is obvi-
ously seen in Fig. 9�b�.

As is known in ideal stability analysis, ideal perturbed
equilibria can be sensitive to the p and q profiles,30

especially in high �N plasmas. The application of ideal per-
turbed equilibria to NTV transport provides indeed a rigor-
ous test on the sensitivity, since the difference in the per-
turbed field and the displacement in �LB is amplified through
��� ��LB�2. Although the investigated cases are based on the
reasonably accurate equilibrium reconstructions, with the q
profiles using motional Stark effect measurements in both
NSTX and DIII-D, a nontrivial sensitivity still exists in the
results. This sensitivity of ideal perturbed equilibria on the
equilibrium reconstruction must be carefully investigated in
the future. Also, one can notice that the predictions are par-
ticularly inaccurate in the edge. Although the large damping
rates in the predictions are partially due to u��0 in the edge,
the overestimated damping rates compared to the experi-
ments are mainly due to the large Lagrangian variation in
the field strength. The results indicate that the ideal con-
straints may not hold in the edge and nonideal effects such as
the destroyed flux surfaces by islands and the currents asso-
ciated with the large torques should be included in perturbed
equilibria.

V. NON-SELF-CONSISTENCY IN IDEAL PERTURBED
EQUILIBRIA

Ideal perturbed equilibria describe perturbed plasmas
with shielded islands by parallel currents and with deformed
magnetic surfaces. An inconsistency occurs when ideal per-
turbed equilibria are used to describe torque effects, since
there is no toroidal torque in scalar pressure equilibria. A
mathematical identity implies that the torque between any

two constant pressure surfaces vanishes ��x� ��� p�d3x=0. For
consistency, one must solve tensor pressure perturbed equi-

libria �� p+�� ·�J = j��B� .15 However, if the torques are suffi-
ciently small, the ideal perturbed equilibria can be a valid
approximation.

The validity can be theoretically argued by estimating
the total energy �W and the total torque T�=��x� ����d3x,
produced by nonaxisymmetric perturbations. It is convenient
to use the dimensionless quantities,

s � −
�W

�Wv
and � � −

T�

2�Wv
, �29�

where �Wv is the required energy to produce the same per-
turbation, but without plasma.46 The comparison between s
and � gives the importance of the toroidal torque when cal-
culating perturbed equilibria. An ideal perturbed equilibria
can be valid when �s� ���. The s is automatically given by
IPEC and � can be approximately given by estimating the
generalized NTV torque using Eq. �13�. When islands are
ignorable, the NTV torque dominates the drive for the rota-
tional damping.40 The n=3 application shown in Fig. 8 has
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FIG. 9. �Color� Comparisons of the damping rates as functions of �N be-
tween measurements ��� and general IPEC NTV calculations in �a� NSTX
and �b� DIII-D. Each number indicates each shot in experiments.
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�s��0.3! ����0.5. This example implies that the effects by
torque on perturbed equilibria are substantial, as can be
seen by the largely overestimated damping rates in the edge.
The n=3 applications shown in Fig. 9 have �s� 0.5 and
���!0.2, which indicate that ideal perturbed equilibria can
be valid in principle. However, these estimations based on
the �s ,�� model only give the importance of the torque in
total, but not for a local torque. The nonphysical peaks in the
�LB in Fig. 5 and the NTV torques in Figs. 8 and 9 still imply
the importance of local torques in the calculations of per-
turbed equilibria. Also, the inclusion of the currents associ-
ated with the torque would improve the largely overesti-
mated damping rates in the edge, which can change the
penetration of the field throughout the plasma.

The apparent breakdown in ideal approximation can oc-
cur when the plasma approaches a marginally stable point,
since then s→0, which makes amplification easier and thus
increases �. The large torque up to �����s� implies the phase
shift of the plasma response46 and then the perturbation can
no longer tap the energy from the plasma. When �����s�, the
shielding by currents associated with the torque has been
theoretically expected,46–48 and also from recent NSTX ob-
servations based on the single �s ,�� model.49 This is impor-
tant for n=1 feedback control of RWM in high �N plasmas.
The higher n has the higher marginal �N, so IPEC results are
expected to be better for many of the higher n"2 applica-
tions. However, tensor pressure perturbed equilibria are nec-
essary to improve the predictions for more accurate plasma
response effects.

VI. CONCLUDING REMARKS

The characteristics of perturbed tokamak equilibria and
the importance of ideal plasma response are described. The
IPEC solves perturbed tokamak equilibria with deformed
magnetic surfaces but no magnetic islands. IPEC has shown
that the effects by perturbed plasma currents can significantly
alter the penetration of magnetic perturbations through
shielding, amplification, and poloidal coupling. The applica-
tions to locking experiments in both NSTX and DIII-D have
shown the importance of plasma response to understand the
observations and an improved approach using the weighted
resonant field including ideal plasma response. This method
could be used to give more reliable correction of the intrinsic
error field and the prediction of error field threshold in the
International Thermonuclear Energy Reactor.34

The importance of plasma response effects is also illus-
trated with the nonaxisymmetric variation in the field
strength and consequent nonambipolar transport and NTV
braking. The actual Lagrangian variation in the field strength
evaluated along perturbed magnetic field lines is different
and typically larger than Eulerian variation along the unper-
turbed magnetic field lines. When the Lagrangian variation
in the field strength in IPEC is coupled with generalized
theory of nonambipolar transport, the consistency between
experiment and theory can be improved. However, various
unresolved issues remain in both theory and experiment as
described.

The present IPEC uses the same method to calculate

plasma perturbation as the ideal MHD stability analysis, so
the sensitivity also exists to the same extent in the ideal
stability of tokamak plasmas. In particular, the result can be
sensitive to p and q profiles given by the reconstruction of
the experimental equilibrium, so the systematic investiga-
tions are required in the future to improve the predictions of
plasma response. This sensitivity may be intrinsic since ideal
perturbed equilibria ignore the currents associated with ten-
sor pressure, as is obvious when the plasma is close to mar-
ginally stable limit. Also, the effects of tensor pressure are
important especially in the edge where islands may exist and
the currents associated with the torque can be significant.
Islands and the NTV transport are the important causes of the
toroidal torque and so the inclusion of a tensor pressure in
perturbed equilibria would give a more self-consistent calcu-
lation.
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