
Anomalous electron transport due to multiple high frequency beam ion driven Alfvén

eigenmodes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 Nucl. Fusion 50 084012

(http://iopscience.iop.org/0029-5515/50/8/084012)

Download details:

IP Address: 198.35.3.144

The article was downloaded on 10/05/2011 at 18:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0029-5515/50/8
http://iopscience.iop.org/0029-5515
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION

Nucl. Fusion 50 (2010) 084012 (11pp) doi:10.1088/0029-5515/50/8/084012

Anomalous electron transport due to
multiple high frequency beam ion driven
Alfvén eigenmodes
N.N. Gorelenkov1,a, D. Stutman2, K. Tritz2, A. Boozer3,
L. Delgado-Aparicio1, E. Fredrickson1, S. Kaye1 and R. White1

1 Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ, 08543-0451 USA
2 Johns Hopkins University, Baltimore, Maryland 21218, USA
3 Columbia University, New York, NY 10027, USA

E-mail: ngorelen@pppl.gov

Received 15 November 2009, accepted for publication 28 June 2010
Published 28 July 2010
Online at stacks.iop.org/NF/50/084012

Abstract
We report on the simulations of recently observed correlations of the core electron transport with the sub-thermal
ion cyclotron frequency instabilities in low aspect ratio plasmas of the National Spherical Torus Experiment. In
order to model the electron transport the guiding centre code ORBIT is employed. A spectrum of test functions of
multiple core localized global shear Alfvén eigenmode (GAE) instabilities based on a previously developed theory
and experimental observations is used to examine the electron transport properties. The simulations exhibit thermal
electron transport induced by electron drift orbit stochasticity in the presence of multiple core localized GAE.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Anomalous electron heat transport was observed in National
Spherical Torus Experiment (NSTX) recently when strong, up
to PNBI = 6 MW, NBI heating was applied in both H- and
L-mode discharges [1]. Subsequent analysis allowed to infer
high rates of the electron heat conductivity χe � 10 m2 s−1.
At the same time strong high frequency MHD activity, f =
0.5–1 MHz, increasing with the applied NBI power, was
measured at the plasma edge and in the plasma core. The
high frequency spectrum contains multiple instabilities, which
can be interpreted as the instabilities of the global Alfvén
eigenmodes (GAEs) localized in the core of the plasma and
excited by the beam ions [2].

The anomalous electron transport potentially can have
significant implications for future fusion devices, especially
low aspect ratio tokamaks. It can severely limit the range of
plasma operation performance.

NSTX is a low aspect ratio fusion experiment [3], which
presents a great opportunity for studying energetic ion physics
due to strong super Alfvénic population of beam injected fast
ions having central beta in the range, βf = 5–20%, in the
plasma with a characteristic central beta, βpl = 10–40%, and
a ratio of the birth velocity to the Alfvén velocity in the range
vb/vA = 2–4.

a Author to whom any correspondence should be addressed.

Two mechanisms responsible for the anomalous electron
transport due to high frequency activity in NSTX are of interest.
The first is the resonance interaction with bulk (1–2 keV
energy) electrons. The second is the stochastization of the
electron drift motion in the presence of multiple instabilities,
which was proposed recently [4]. It is based on the beam ion
excitation of multiple core localized GAE instabilities, which
at sufficiently strong amplitudes result in stochastic electron
drift orbits that in turn can cause the anomalous electron
transport. In this paper we investigate this hypothesis in detail
using the set of test functions employing numerical simulations
with the help of the guiding centre code ORBIT [5], which
follows thermal electron trajectories. The second mechanism
turns out to be the dominant one for the electron transport
in our simulations when multiple modes are present. This
is different from previously suggested low frequency GAE-
induced electron heat conductivity, which required coherent,
resonant electron–GAE interactions and the introduction of
the parallel electric field due to the coupling of GAEs and
kinetic Alfvén waves (KAWs) [6]. Further development of the
resonant mechanism and the following alternative explanation
of the anomalous electron transport in NSTX has been offered
more recently [7]. Our simulations imply that both passing and
trapped electrons have broad response to the perturbations in
the phase space (namely in pitch angle, λ = (1−v2

‖/v
2)B0/B,

and energy, E , where v‖ is parallel to the equilibrium magnetic
field vector, B0, velocity component).
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Figure 1. Correlation of the high frequency MHD activity with the flattening of thermal electron temperature profiles near the plasma centre
as reproduced from [1] for NSTX shot #120438.

It is interesting that the characteristic frequencies of
transit and bounce motion of electrons are close to the mode
frequencies observed in the range 0.5–1 MHz and perhaps
can contribute to the diffusion via the beat-wave resonances.
Characteristic thermal passing electron transit frequency in
NSTX plasmas is fte = (1/2π)(v‖/qR) = 1.5 MHz evaluated
for electron temperature Te = 1 keV, safety factor q = 2
and major radius R = 1 m, whereas trapped electron bounce
frequency fbe = (1/2π)(v⊥/qR)

√
r/2R = 400 kHz at q = 2,

r/a = 0.2, where r is the minor radius of a magnetic surface
and a is the plasma minor radius. In experiments q can
change so that this estimate should be adjusted. Because
of such close frequency relations the adiabatic contribution
to the fluctuations of particle trajectories in response to the
perturbations remains significant and if coupled with the
stochastization mechanism can induce particle diffusion.

Application of the guiding centre code, ORBIT, shows
that the required level of the electron heat conductivity,
χe � 10 m2 s−1 is established in simulations with >∼20
intermittently unstable GAEs with the internal density
perturbation amplitudes on the order of δne/ne = 10−3.
This is close to the experimentally measured plasma density
fluctuations inferred from the density averaged over the sight
line of the high-k diagnostics operated in the interferometric
mode. Our simulations address the requirements for GAE
structure, amplitudes and the number of modes to achieve the
electron heat diffusivity resulting from experimental analysis.
Results from the comparisons of the theory and recent NSTX
experiments are presented. In this paper we focus not on exact
comparison with the experiments, but on the theoretical and
numerical insights of the electron transport mechanism due
to multiple GAE instabilities with the test functions of GAE
structures. Such insight is needed for further experimental
and theoretical studies. In addition, to account for the effects

due to the collisions we will use electron Coulomb scattering
frequency νe/ωce = 3 × 10−7 (ωce = 0.7 × 1011 s−1), and
assume that e–i collisions double its value.

This paper is organized as follows. In section 2 we outline
key experimental evidence of the anomalous electron transport
in NSTX plasma. Then we present the numerical model in
section 3. Results of the simulations and their interpretations
are given in section 4. It turns out that the effect of the parallel
electric field is important for the electron diffusion even when it
is small. The relevant simulation results are given in section 5.
The main results of the work are summarized in section 7.

2. Experimental evidence of anomalous electron
transport

Experimental results from NSTX were reported earlier [1] and
showed that at high NBI power, electron temperature does not
increase in the centre during the heating phase even when
the applied power increases from PNBI = 2, to 4 and then
to 6 MW. Instead, the Te profile becomes flat in both L- and
H -mode discharges near the plasma centre, r/a � 0.4, as
can be seen in figure 1. Here we studied NSTX plasma with
parameters that are typical for NSTX operations: aspect ratio,
R0/a = 0.85 m/0.61 m = 1.4, NBI energy of 70–90 keV,
plasma current Ip = 0.8–1 MA, equilibrium magnetic field
BT 0 = 0.45–0.55 T and flat density profile with a central
density value (5–6) × 1013 cm−3. The safety factor was close
to, but above 1, so that the sawtooth oscillations are avoided.

An analysis of the overall plasma performance using the
TRANSP code was conducted to infer the thermal electron heat
conductivity. The code solves the power balance equations
and accounts for the heat diffusion via various channels. It
uses several constraints from the measurements of the internal
plasma parameters, such as electron and ion temperature and
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density profiles as well as the neutron flux. Such analysis
required strong χe so that at PNBI � 4 MW TRANSP
predicts characteristic χe � 10 m2 s−1. The predictions
for the low end of the χe range seem to be robust even
with the uncertainties in the measurements and in the analysis.
The robustness in part comes from the dominant heating
channel of electrons by the beams. Only below critical energy,
Ebcrit � 20Te � 20 keV, beam ions transfer their energy to
the thermal ions, so that the majority of the NBI power is
absorbed by electrons. Beam ions are expected to have peaked
profiles with insignificant low frequency MHD such as in the
studied plasmas. This is supported by the neutral particle
analyzer (NPA) measurements. Further, in many experiments
the localization region of low frequency Alfvénic activity is at
the minimum of the safety factor surface, which is outside the
plasma centre. Thus, the low frequency modes are decoupled
from the mechanism of the electron transport. As detailed
analysis shows, the flattening of the fast ion profiles is not
consistent with the neutron flux and NPA measurements [8].

Thermal ion transport stays low, within the neoclassical
range, an order of magnitude lower than χe, in high NBI
power shots. This suggests that the stochastic thermal ion
heating mechanism [9] is not applicable in these plasmas.
We also note that central Te flattening is accompanied by a
temperature increase at the periphery, which is reflected in
χe radial dependence and in the fact that total heating power
substantially increases.

An independent support of TRANSP inferred χe value
comes from a special experimental study of the induced Te

perturbation propagation in high NBI power discharges [8].
In those experiments applied Li pellet ablates in a shallow
region near the plasma edge and introduces Te perturbation
propagating rapidly in the high beam power plasmas towards
the plasma centre. Such a technique was applied to edge-
localized modes (ELMs) studies and ELM effects on electron
transport [10]. The rate at which the temperature perturbation
propagates allows observation of radial dependence of the
χe value independently of TRANSP results. From those
perturbative experiments χe emerges in the range of tens
m2 s−1, which is in the same ballpark as the predictions
from TRANSP. The absolute value of temperature perturbation
is relatively small and amounts to ∼10%Te(0) and can be
comparable to the edge electron temperature. As an example
we show contours of the electron temperature in figure 2
measured by the SXR diagnostic in the (time, Te) plane. Te

perturbation is shown to propagate from the edge (t � 453 ms)
to the plasma centre (t � 455 ms). The total time of the cold
front propagation is very short, on the order of 2 ms.

The time dependence of the perturbation propagation can
be obtained from the diffusion equation. If the perturbation
gradient is strong, Te/∇Te < r , and the perturbation is
Gaussian in radius the radial coordinate of the perturbation
front should evolve according to

rpert = a −
√

tχe(r).

Thus, in observations we should look for the fastest change in
Te(t) (point of strongest slope gradient of the Te(t) dependence
in figure 2) to characterize the front propagation. The
corresponding curve of the Te perturbation front is shown in

Figure 2. The SXR diagnostic measured the electron temperature
evolution during the shallow pellet perturbation in NSTX shot
#120440 with 6 MW beam power. NBI power is increased from
4 MW in the pre-heat phase.

figure 2 as a thick dashed line. This curve is different from
the curve used in [8], where the minimum of the perturbation
in time was used as a reference point to characterize the
perturbation propagation. Figure 2 corresponds to when the
beam power was changed from 4 MW in the pre-heat phase
to 6 MW. Inferred χe reached 100 m2 s−1, which is consistent
with the TRANSP simulation (see figure 1). A more accurate
comparison requires more detailed study of the SXR diagnostic
modelling. If the power is changed to 2 MW the perturbation
does not propagate beyond r/a � 0.5 to the plasma centre.
This points to low χe value.

We also note that the behaviour of the Te perturbation
front propagation indicates the diffusive process rather than the
presence of the convective cells, except near the very centre of
the plasma, r/a < 0.25.

Subsequent analysis of the plasma with regard to the
microscopic stability performed using the linear GS2 code
indicated that the central gradient is too weak to sustain any
known drift instability at the growth rate above the observed
shearing rate of the plasma rotation [8]. Measurements of the
wavevector spectrum with high-k diagnostic did not show any
evidence of the ETG driven instability at frequencies where
they are usually seen.

On the other hand, a correlation between the flattening of
the electron temperature and the high frequency activity was
observed as shown in figure 1. The frequency range where
instabilities are seen, 0.5–1 MHz, is typical for NSTX plasma.
This frequency range was shown to be populated by both
GAEs [2] and compressional Alfvén eigenmodes (CAEs) [11].
The mode identification was based on the observed instability
frequency evolution and its polarization. The caveat in the
polarization measurements is that recent simulations using
HYM code [12] have demonstrated that the GAEs having shear
Alfvén polarization, δB⊥ > δB‖, in the plasma centre can
have different polarizations at the plasma edge, δB⊥ < δB‖,
which is the property of CAEs. Thus, to robustly identify
the instability one has to measure its internal structure in
addition to the polarization and frequency spectrum. GAEs are
localized primarily near the plasma axis [2], whereas CAEs are
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localized closer to the plasma edge [13], but can be also present
near the plasma centre [14]. One important theoretical result
is that GAEs with different m, n pairs have different frequency
evolutions as follows from a simple GAE dispersion relation:
ω � vA(m − nq)/qR0. Based on the frequency evolution of
the peaks in the spectrum in figure 1 we can conclude that
some of the peaks evolve independently in time. This means
that GAEs are apparently excited by the beams. More detailed
structure measurements and mode identification are required
for more accurate comparisons with the experiment.

3. Model for numerical study of GAE driven
electron transport

3.1. GAE perturbation

We use previous results of theoretical findings and numerical
modelling to set up the GAE test functions for e-transport
investigations.

First, we note that conventional GAEs are localized just
below the minimum in the Alfvén continuum [15]. GAEs
were studied for the case when the continuum has a minimum
between the plasma centre and the edge. Typically with flat
ne profiles near the plasma centre in NSTX and monotonic q

profiles, Alfvén continuum has a minimum at r = 0. This case
was also shown to have core localized GAEs in both theory
and numerical simulations [2, 16]. It follows that to predict
GAE localization and the width one has to know q profile
with very good accuracy, which is often difficult to achieve in
experiments. Instead, in the following numerical studies we
set up all GAEs to be localized at r0/a = 0.2 (where TRANSP
predicts the peak of χe), having one poloidal harmonic, m,
and Gaussian radial structure at radial width proportional to
m−1, which directly follows from the theory [2]. Many radial
solutions can exist at each m, n pair, but we will use only
the lowest one, which corresponds to the widest GAE radial
structure and are likely to be more unstable than the higher
radial number solutions.

At the high frequencies of interest we can neglect the
compressibility of GAEs and leave only flute-like perturbation,
which implies the following form for the perturbed magnetic
field [5]

δB = R0∇ × (αB0), (1)

where B0 is the equilibrium magnetic field, and the sum over
various modes is assumed:

α =
N∑

j=1

αj = α0

N∑
j=1

e−iωj t+imj θ−inj ϕ · e−m2
j (r−r0)

2/δr2
+ c.c.

(2)

Here ωj , mj and nj are the frequency, poloidal and toroidal
mode numbers of the j th mode. All the GAEs are assumed
to have the same amplitude α0. We also fix n to be
negative ranging from −1 to −7 (counter to the plasma
current propagation), which follows from the magnetic coil
measurements of GAE spectrum in the frequency range of
interest. For each n we vary the poloidal mode number and
check the simplified GAE dispersion relation

ωj = vAk‖j � vA
mj − njq

qR0
(3)

to verify if the mode frequency falls into the frequency range
0.5 to 1 MHz of MHD activity. With the plasma parameters
of the analysed NSTX shot up to N = 31, modes can exist
in this frequency range with the rotation effect included. We
do not study the stability criteria for each mode, so that some
of the modes used in the simulations could be stable. It turns
out that for the stochastic diffusion due to GAEs it is sufficient
to include only some of N = 31 GAEs. It will be shown in
section 4.3 that the stochastic threshold is achieved in this case
at N >∼ 16, which is also sensitive to the mode amplitude.

Given the perturbations, equation (1), the radial
component of GAE perturbed magnetic field can be
approximated as

δBr/B0 � ikθαR0 = iαmR0/r. (4)

For the baseline case of the simulations we consider, qmin �
1.3, α0/R = 4 × 10−4, its characteristic value is δBr/B0 �
0.5 × 10−2 and δr = 0.4a.

Perturbation in the form of equation (1) allows for the
finite parallel electric field, which is not compatible with the
ideal MHD model widely used in GAE theory. Because of its
strong effect on electron dynamics one has to be sure that E‖ is
zero in the cold plasma limit, i.e. the electrostatic polarization
potential needs to be introduced via the equation

E‖ = −∇‖φ − 1

c

∂αB0R0

∂t
= 0 (5)

for each eigenmode, which implies that for one mode
denoted with the subscript j the linear approximation for the
electrostatic potential is

φj = ωjαjBR0/ck‖j . (6)

Nevertheless, even the ideal MHD GAE structure allows
for a small but finite parallel electric field. Its value can
be found using the quasi-neutrality condition including such
effects as thermal ion finite Larmor radius (FLR), electron drift
frequencies, two fluid effects and fast ions. One can show that
all those effects are of the same order as the FLR effect if
computed perturbatively given the ideal MHD GAE structure.
For the FLR effect we can define parallel electric field potential
E‖ = −∇ (see, for example, [17])

j = φj

bi

bi + 1
, (7)

where bi = (k⊥ρi)
2/2 and k⊥ � kθ . It is consistent with

vanishing E‖ in the zero FLR limit corresponding to the ideal
MHD. In the NSTX baseline case we estimate bi � 0.5×10−4

given the ideal MHD GAE structure. At that level E‖ has a
small effect on the electron transport. Another source of the
finite parallel electric field implicitly present in simulations
comes from the second order corrections to equation (5), which
is also small as seen in simulations. The discussion of its
contributions to φ is given in appendix A.

3.2. Use of particle code for heat diffusion simulations

One can show that thermal ions do not interact with the high
sub-cyclotron frequency oscillations of interest due to their
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Figure 3. The electron Poincaré plot in the plane {ψ̄, θ0 = ω1t + nϕ} with ψ̄ being the poloidal flux normalized to its edge value. The
baseline case is considered with α0/R = 4 × 10−4 and δE‖ = 0.

low velocities. Fast ions, as we argued, provide the drive for
GAE instabilities, but their density is negligible in comparison
with the background density. Thus one can expect that the net
thermal electron particle transport is negligible. This requires
the introduction of the ambipolar electrostatic potential to
compensate for the radial electron particle flux. If the electron
distribution function is

Fe = ne exp[−(E + eφ)/Te](me/2πTe)
3/2, (8)

the electrostatic ambipolar potential can be found via

�e =
∫

DeFe

(
−eφ′

Te
+

n′
e

ne
+

ET ′
e

T 2
e

− 3

2

T ′
e

Te

)
d3v = 0, (9)

where prime means radial derivative. It follows from
equation (9) that the ambipolar potential is zero as expected
for the Maxwellian distribution with a flat density profile. For
the arbitrary distribution function such as found in numerical
simulations we find

eφ′

T ′
e

=
〈
De

[
(ln ne)

′

(ln Te)′
+

E
Te

− 3

2

]〉 /
〈De〉,

where 〈f 〉 = ∫
Fef d3v/

∫
Fe d3v. We also find for the

distribution close to Maxwellian

q =
∫

EDeFe

[
−eφ′

Te
+

n′
e

ne
+

ET ′
e

T 2
e

− 3

2

T ′
e

Te

]
d3v

= ne
3

2
DeT

′
e = neχeT

′
e . (10)

Whereas for the numerical distribution

χe

De
=

〈
EDev

[
−eφ′

T ′
e

+
(ln ne)

′

(ln Te)′
+

E
Te

− 3

2

]〉
Te〈Dev〉

=
〈
E2Dev

〉
T 2

e 〈Dev〉 − 〈EDev〉2

T 2
e 〈Dev〉2 . (11)

This expression is important as it allows to infer χe from the
particle diffusivity, which is easily computed using particle
codes, such as ORBIT.

4. ORBIT modelling

4.1. Single electron motion

Guiding centre code ORBIT [5] is employed here with
the perturbation in the form equation (1). The underlying

processes responsible for the stochastic electron transport can
be understood from single electron dynamics.

First, we study the single electron motion in the presence
of GAEs for the baseline case. It is possible to construct the
Poincaré map in the plane {ψ̄, θ0 = ωt + nϕ} for one mode.
Trapped particles with only one mode included, (m, n) =
(3, −1) at f = 510 kHz, form a map shown in figure 3(a).
When the second mode is added we show the Poincaré map
in the plane with the phase determined by the characteristics
of the first mode, θ0 = ω1t + nϕ. In both cases one can see
the secular motion of electrons, which is bounded in the radial
direction. However, when multiple modes are included, such
as the N = 20 case shown in figure 3(c), the electron motion
becomes stochastic.

Perturbed electron motion in the direction perpendicular
to the equilibrium magnetic field can be described by two
effects, the magnetic field bending and the drift due to the
perpendicular electric field:

δv⊥ = v‖
δB⊥
B0

+
c

B2
0

[δE × B0], (12)

where δ refers to the perturbed quantities. Radial displacement
of an electron, ξr , can be found from here using equations (4)
and (5):
dξr

dt
= dδBr

dt

1

ik‖B0
+

ckθδE‖
k‖B0

− (vdr∇)δBr

ik‖B0
= dδBr

dt

1

ik‖B0

+
ckθδE‖
k‖B0

+
(vdrδE)ckθ

vAk‖B0
, (13)

where vdr is the toroidal drift velocity of electrons. The full
derivative, first term in the rhs of this equation, is integrable and
corresponds to the adiabatic electron motion. Thus, without
the perturbed electric fields there is no net radial diffusion.
The second and third terms on the rhs are non-adiabatic, which
can result in the radial diffusion in the case of a few modes.
We note that parallel electric field and the toroidal drift affect
both non-resonant and resonant electrons. E‖ was used to
describe the resonant electron interaction in [6]. As we will
show the resonant coherent motion of electrons is destroyed
in the presence of multiple modes and is less relevant to our
problem. This conclusion is the result of the numerical study
illustrated in figure 5. If the second and the third terms of
equation (13) are small we find the characteristic electron radial
displacement:

ξr = δBr

ik‖B
= αR0

kθ

k‖
. (14)

5
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It also follows that the equation for ξr can be rewritten in the
form

dξr

dt
� −i(kθR0)v‖α

(
1 − bi

√
me

βemi
− k

kθk‖R

√
bi

√
2me

mi

)
.

(15)

Two last terms in the rhs of equations (13) and (15)
are related as

√
bi :

√
2βe/k‖R, which means that with the

NSTX parameters of interest and with the ideal MHD GAE
structures, the parallel electric field term is smaller and the non-
adiabatic interaction is mediated by the perpendicular electric
field and the toroidal drift. The last term in equation (13)
was neglected in [6]), which was justified in that work by an
assumed significant increase in bi from the ideal limit.

Thus, the mechanism of electron diffusion follows. The
first term in equation (13) determines the radial electron
displacement, whereas the third term (toroidal drift across
the field line) makes the electron motion non-integrable by
dephasing it from the secular adiabatic motion (detaching
from the field line). The electron–GAE dephasing introduces
electron orbit stochasticity when many GAEs are present.

We estimate the characteristic dephasing time, τdeph, from
the requirement that the third term in the rhs of equation (13)
introduces radial displacement sufficient to change electron
phase by �rkr � π . From equations (13) and (6) we find that
the inverse dephasing time is proportional to the toroidal drift
velocity and the mode amplitude:

τ−1
deph = krkθR0

πk‖
vdrkα. (16)

It is important to note here that in both equations (14) and
(16) α includes all the modes. The resulting sum of the
modes depends strongly on the particular spectrum used in
simulations. It can be shown that in our case the sum of GAEs,∑

j αj , along the particle orbit is limited by the maximum
value, which increases with N . It is trivial in the case of
two modes, but gets more complicated in the case of multiple
modes, which is difficult to compute analytically. Leaving the
details to future work we offer an empirical expression for the

limit value of the α variation, |α| � α0NNthr/

√
N2 + N2

thr,
which appears to be valid for low to medium N , where
Nth � 15. We also note that at high N , |α| < α0Nthr.

4.2. Particle diffusion

In the numerical study we load electrons with the Maxwell
isotropic distribution function on a certain flux surface and
monitor how their radial positions evolve in the presence of
multiple GAEs and collisions. Electrons are allowed to drift
in the equilibrium magnetic field over a long time period
compared with their transit, precession periods around the
torus and the oscillation periods of GAEs. If the process is
diffusive then we should observe linear in time behaviour of
the average over particles of the flux variable, 〈�ψ2〉(t), where
�ψ = ψ̄−ψ̄0 and ψ̄0 is the particle initial normalized poloidal
flux.

In the example shown in figure 4 we used the baseline
case with α0 = 4 × 10−4, ψ̄ = 0.06, ψ̄0 = 0.04, Te =
1 keV and N = 31. One can see almost linear dependence

∆ψ
2

<
   

  >
(1

0 
)

–3

1

0.5

1.5

0.010 0.02 0.03
t(ms)

Figure 4. Time evolution of the poloidal flux 〈�ψ2〉(t) averaged
over the electron distribution in the presence of multiple GAEs.

of 〈�ψ2〉 in time from t =∼ 0 (after electrons prompt
relaxation) to t = 0.012 ms. It is well known that the linear
dependence is characteristic for the particle diffusion with the
initial distribution close to the delta function in radius. By
t = 0.012 ms most effected electrons reach the boundaries of
the GAE localization region and the effects of the mode finite
width become important.

It is interesting to look into the phase space picture of the
electron diffusion. In figure 5 we plot the contour map of the
electron displacement in the plane-pitch angle, λ = µB0/E ,
energy, E(keV), where µ is the adiabatic moment. Shown is
the deviation of the particle poloidal magnetic flux from the
mean poloidal magnetic flux over the particle distribution:

〈|ψ2 − 〈ψ〉2|〉dv,

where dv means that the average is taken over the vicinity
(small rectangle on the contour map) of a point in the map
plane. In figure 5(a) the deviation is plotted for the intermediate
values of the GAE amplitudes, α0 = 10−4 and νe = 0, whereas
for figure 5(b) we used much larger amplitudes α0 = 4×10−4.
In both cases we had N = 31 modes and ψ̄ = 0.05. For
weak GAE amplitudes two regions are seen to have stronger,
perhaps resonant, interactions with the modes. First is the
passing particle region, approximately at λ = 0.3, E = 3 keV,
at which energies electrons do not have direct transit resonance,
but may have some beat frequency transient resonances with
the frequencies �ωjk = ωj ± ωk . The second region is the
trapped electron region, near λ � 1 in a broad energy range.
Simulations indicate that it is broad due to many frequencies
present and thus many trapped electrons potentially may be in
resonant interaction.

GAEs with strong amplitudes smear the regions of strong
coherent electron–GAE interactions, such as at α0 = 4×10−4

shown in figure 5(b). Clearly the interaction with electrons
is much broader in the phase space at high mode amplitude,
which indicates that the resonant structures are not established.
Application of the expression, equation (11), to case (a), α0 =
10−4, gives very low electron heat conductivity χe < 1 m2 s−1,
whereas at α0 = 4 × 10−4 we find χe � 10 m2 s−1, which is
marginally close to the TRANSP inferred values.
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Figure 5. Contour map of electron displacement in the phase space. Mean values 〈|ψ2 − 〈ψ〉2|〉dv are plotted in each bean, where the outer
averaging is taken in the vicinity of each point of the plane. Elevation is in arbitrary units reflected in the linear colour scheme. (a) is for low
GAE amplitudes α0 = 10−4, whereas (b) is for high amplitude α0 = 4 × 10−4.

As we argued in the discussion after equation (13)
the decorrelation of the electron GAE interaction is due
to the oscillating electric fields. For the coherent wave
particle interaction, which is expected in the case of resonant
interaction, the particle energy change is proportional to the
change in the particle radial position �ψ ∼ �E [18]. If
the resonances are important and if they remain coherent over
the simulation time they should be recognizable as structures
in the electron test particle simulations because only a finite
number of low n modes is present and because the frequencies
of all the modes are close to each other. We illustrate such
dependence obtained in simulations in figure 6, where no sign
of resonant structures can be identified. This lends support to
our interpretation of the mechanism of electron diffusion to be
broad in the phase space in which the coherent interaction with
the GAEs is not established and electron drift trajectories are
stochastic.

4.3. Thermal electron heat conductivity dependences

Because of the importance of the stochastic threshold onset we
show the dependence of the heat electron conductivity on the
number of GAEs included in the simulations in figure 7. In this
study we increased the number of modes by varying n from
−1 down and varying m’s to fit the 0.5 to 1 MHz frequency
range.

At small N ’s χe is small and only weakly depends on
N . This is consistent with our argument about the adiabaticity
of the electron motion. Note that the role of resonances is
weak at these amplitudes as only a narrow region of the phase
space is affected. Electron diffusivity jumps by almost two
orders of magnitude at N > 16. The modes included in
simulations are all close in values of k‖ and frequencies, and
interchanging them produces similar results. At N >∼ 16
we find a plateau: weak dependence on the number of modes,
which is a surprising result.

In simulations we observed various dependences with
regard to the GAE amplitudes. The results of such study are
shown in figure 8.

These results together with the single particle character-
istic motion (see section 4.1) help to construct the expression
for χe and to understand its dependences on some plasma
and GAE parameters. The radial particle displacement
is randomized by the toroidal drift dephasing with the
characteristic time given in equation (16). Thus we
can construct the following expression having in mind

Figure 6. The change in the electron radial position shown via the
change in the normalized poloidal flux versus the change of its
energy for the baseline case. Particle parameters are taken at the end
of the run shown in figure 4.

Figure 7. Electron heat conductivity dependence versus the number
of applied GAEs. The results are obtained for the baseline case
νe/ωce = 6 × 10−7, ψ̄ = 0.06, α0/R = 4 × 10−4.

equation (14) and characteristic values k‖ � 2m/qR, m = 3,
α0 = 4 × 10−4 q = 1.3, N = 20:

χe = 3

2
ξ 2
r τ−1

deph = α3R3
0

3k3
θ

2k3
‖

krk⊥vdr

π
, (17)

which is evaluated to χe � 4 m2 s−1. This is reasonably close
to the observed values of the thermal heat conductivity at the
plateau given the spread of used GAE parameters.

The expression for the diffusion coefficient we found has
cubic dependence on the mode amplitude χe ∼ α3. This is

7
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Figure 8. Electron heat conductivity versus GAE amplitude
dependences. Solid curve corresponds to the χe without collisions at
ψ̄ = 0.05, dashed curve includes collisions, dash–dot–dot–dot curve
includes collisions but is obtained at ψ̄ = 0.06. For comparison, two
lines, dash–dot and dot–dot, are plotted with α3 and α6 dependences.

different from the diffusion due to the resonant island overlap
χe ∼ α, where the island width increases like

√
α. It is also

stronger than quadratic power dependence obtained in [6].
Although both the absolute value from the estimate,

equation (17), and its dependence on the mode amplitude,
χe ∼ α3, are in agreement with simulations at α0 < 5 × 10−4,
we observed stronger dependence, χe ∼ α6, at higher mode
amplitudes, such as shown for ψ̄ = 0.05. It is possible that
higher order nonlinear resonances contribute to the diffusion,
but we defer its interpretation to future works. However,
we rule out the potential effect of nonlinear high order in α

corrections to E‖ by carefully examining their contributions
numerically using several techniques. The discussion of such
effects is presented in appendix A.

Strong amplitude power dependences, χe ∼ α3 and
χe ∼ α6, can introduce intermittently strong e-transport, which
can be expected if the GAE amplitude bursts over a short
time period. At the same time, measured amplitudes are
often obtained from time-averaged data so that the peak GAE
amplitude can be higher. The evidence of such behaviour
should be reviewed in the experiments. We also note that
the collisions have small effects at large mode amplitudes as
expected.

Radial dependence of the electron thermal diffusion is
determined by the GAE structure assumed in simulations. It
is found to be peaked near the mode localization region as
shown in figure 9. From these results we can conclude that
the marginal agreement between the simulations and χe >

10 m2 s−1 inferred from the experiments can be achieved at
the level of mode amplitudes α > 4×10−4, which also means
that the perturbed magnetic field is δBr/B >∼ 0.5 × 10−2 or
ξr/R ∼ α(m/k‖r) ∼ α/ε ∼ 10−3 and δn/n � ξr/R.

5. Parallel electric field effect on electron transport

Due to small mass electron transport is sensitive to the
parallel electric fields. To investigate this effect we use an
additional contribution to the electrostatic potential, , so that
E‖ = −∇, which appears due to thermal ion FLR and is
given by equation (7). In this study E‖ variation is achieved
by changing parameter bi taken to be the same for all modes
for the purpose of illustration. The contribution of  to E⊥
is small, but is a key factor for E‖ effects. Depending on the

Figure 9. Radial dependence of thermal electron conductivity
obtained for the baseline case at α0 = 4 × 10−4 with (dashed line)
and without (solid line) collisions.

Figure 10. Parallel electric field dependence of the electron heat
conductivity for the baseline case νe = 0, α0 = 4 × 10−4. Two
curves correspond to two different initial radial positions of
electrons as indicated.

initial radial position, even relatively small E‖ can increase
thermal electron heat conductivity by as much as an order of
magnitude if, for example, bi changes from zero to bi � 10−3

at ψ̄ = 0.05 as presented in figure 10.
We observe two characteristic dependences here. Linear

dependence, χe ∼ E‖ ∼ bi, is typical and is seen at ψ̄ = 0.06.
On the other hand, from equation (13) it follows that dephasing
of electron–GAE interaction is possible due to the parallel
electric field. The characteristic time in this case is

τ−1
deph = krkθvAR0

π
αbi.

Consequently, we find the heat diffusion coefficient

χe = 3

2

k3
θR

3krvA

π
α3bi. (18)

This expression has the same linear dependence on bi as seen in
the numerical experiment, figure 10. We should note, though,
that at certain radii and small values of bi we find quadratic
dependences of the electron heat conductivity, χe − χe|E‖=0 ∼
E2

‖ ∼ b2
i , bi < 3×10−4. One can imagine that at a low parallel

electric field the additional contribution to the diffusion comes
from the resonant electron displacement (along the lines of [6]),
but more detailed study of the phase space maps did not reveal
the presence of the resonant structures if multiple modes are
included.

Because of the strong effect of the parallel electric field it
is important to understand its possible origin. As we saw, the

8
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Figure 11. Spectrum of N = 31 GAEs used in ORBIT simulations with the amplitude α0 = 1.5 × 10−4. (a) shows a line averaged
perturbed density spectrum with the line of sight at r/a = 0.25. (b) shows the local amplitude of the density perturbation. Plasma rotation
with the frequency frot = 25 kHz is taken into account.

perturbative parallel electric field with the ideal MHD limit for
k⊥ has negligible effect on the transport. Another effect can be
brought up, which is coupling to the KAW. It can potentially
introduce strong parallel electric field due to large k⊥.

In the standard GAE theory [2, 15] eigenfrequencies lay
below the Alfvénic continuum, where the KAW does not have
a propagating wave-like solution. GAEs will have kinetic
features with a strong KAW presence if their frequency is above
the Alfvén continuum. Such coupling was suggested to exist
in stellarators [6]. In tokamaks the theory suggests that the
eigenmodes do not always exist in this case. If GAE frequency
lays above the continuum maximum (q has a local minimum at
some point, r = r0, slightly away from the axis) the criterion
for the mode existence was obtained in [19], Q > 1/4, where
Q is a certain function responsible for the ‘effective’ potential
well. With the expression for Q obtained in high aspect
ratio, high-n approximation in [20, 21] this criterion has a
form

Q � |n|
r2

0 |q ′′
0 k‖|R0

[
α2

2
− �′α + αε

q2 − 1

q2

− ε

2
(ε + 2�′)

]
>

1

4
, (19)

where α = −R0q
2β ′, ε = r/R0, �′ is the derivative of the

Shafranov shift. In another case when the Alfvén continuum
has a minimum (q has a local maximum at r = r0) and
GAE frequency lays above it, the criterion for the eigenmode
existence can be written in the same form and was obtained
in [22]

Q > 2. (20)

One can see that the second case is more restrictive and
requires flatter q profiles. It also follows from both criteria
that at sufficiently flat q-profiles (small r2

0 q ′′) kinetic GAEs can
exist.

One particular issue to be resolved is showing that
the hybrid kinetic GAE modes are more unstable than the
conventional GAEs.

6. Discussion and implications for experiments

Because of the difficulties of measuring the internal mode
structures we can compare model GAE spectrum only with
the spectrum of the high frequency modes measured by a
high-k diagnostic working as an interferometer [23]. The

high-k measured high frequency mode spectrum is averaged
within 10 ms and has a maximum of the integrated density
perturbation on the level of 〈δne〉/〈ne〉 � 1.5 × 10−4. We
show the synthetic diagnostic signal of the used GAE spectrum
integrated along the same line as in experiments (see figure 11)
with the amplitude α0 = 1.5 × 10−4, which has to be chosen
in such a way that the maximum among all GAE amplitudes
fits the measured maximum over the spectrum peaks value
〈δne〉/〈ne〉 � 1.5 × 10−4. Our plotted spectrum is to be
compared with the spectrum shown in figure 4 of [1]. In
plotting figure 11 we made use of the following relations:

α = (m − nq)r

qR0m

ξr

R0
= (m − nq)r

qR0m

δne

R0∇ne
. (21)

From the latter and figure 11 it follows that approximately we
indeed have α0 � 〈δne〉/〈ne〉.

One important conclusion to be drawn from figure 11 by
comparing (a) and (b) is that the local value of the density
perturbation can be significantly larger than its integral by as
much as 5 times. This has to be taken into account when
making a comparison with the experiments.

Because of the time averaging used in high-k
measurements, GAE peak values within the averaging time
interval are larger than the value cited here and in [1] by as
much as a factor of 2 or 3. GAE amplitude fluctuation can be
seen in the magnetic coil spectrum evolution. We note that the
marginal value for the electron heat conductivity inferred from
experiments, χe = 10 m2 s−1, can be explained by simulations
presented in this work given this uncertainty.

In order to make a projection for the electron transport
due to multiple GAEs to other fusion experiments one has
to predict the number, the structure and the amplitudes of
the unstable GAEs. This requires the nonlinear simulations
with the capabilities to model the cyclotron resonances
in wave–fast particle interactions. These tools are under
the development [2, 12]. However, based on this work
and previous observations we can draw some qualitative
conclusions.

Essential elements of the GAE driven electron transport
model presented here for NSTX imply a strong drive on the
level γ /ω = 1–10% [2] due to strong anisotropy of beam ion
velocity distributions. Such anisotropy is also expected for
alpha distribution in an ST-like reactor, but less in ITER [24].
GAE instability similar to the ones in NSTX requires a large
ratio vf/vA = 2–4, which is typical for STs. Weakly damped
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multiple instabilities, N � 10, have to be present. Because the
drive is proportional to the energy available for the instability,
which in turn is proportional to the fast ion beta, βf , the latter
seems to be one of the key parameters responsible for how
many GAE instabilities are excited and how virulent they can
be. Such conditions mean that relatively high βf and βf/βpl

are required. Hence, one can conclude that the ST-like fusion
reactors are more likely to develop anomalous electron heat
transport due to multiple GAE instabilities driven by fusion
alpha particles.

7. Summary

We have demonstrated that multiple unstable GAEs with
sufficiently strong amplitudes can be responsible for the
anomalous electron transport in NSTX. The mechanism
for such anomalous transport is stochastic electron radial
drift motion in the presence of multiple GAE instabilities.
Spacial overlap of multiple instabilities is required for such
transport.

Anomalous electron thermal conductivity on the level of
χe = 10 m2 s−1, which is inferred from TRANSP modelling,
is obtained in numerical simulations with N > 16 GAEs
each having the amplitude of the parallel vector potential
α0 = 4 × 10−4. Within the experimental uncertainties of
the mode structure and measured amplitude (factor of 2–3)
our simulations produce the required level of electron heat
conductivity. Accurate mode identification and structure
measurements of high frequency instabilities are needed for
better comparison with experiments.

We demonstrated that electron heat conductivity has a
strong mode amplitude power dependence (χe ∼ α3 and up
to χe ∼ α6 at high mode amplitudes) and conjecture that it can
introduce intermittently strong e-transport. If GAE amplitudes
burst over a short time period, GAEs can intermittently induce
strong electron diffusion. The evidence of such behaviour
should be sought in the experiments. It is interesting that
the characteristic magnetic field of the perturbations in our
simulations, δB/B � 0.5 × 10−2, is the same as used in [7],
where the resonant electron–GAE interaction was brought
about as a basis for the energy channelling of the heating
power from beam ions to GAEs and finally to electrons in
the regions outside of the plasma centre. In this mechanism
persistent excitation of GAEs is required, implying that almost
all the energy from high energy beam ions is transferred to
the modes (about half of the injected power comes in low
energy ions: at half and one-third fractions of the injection
energy). In our mechanism it is possible that GAEs induce
electron transport on a short time scale when the perturbation
amplitude peaks. In our simulations it is a fraction of a
millisecond.

We showed that the perturbed parallel electric field can
strongly enhance the radial diffusion. Evidence for E‖
presence in experiments have to be sought by resolving
ρ−1

i scales. We ruled out the possibility that the nonlinear
second order in perturbation correction contributions to the
parallel electric field have an effect on the electron thermal
diffusion. We would like to note that the interaction between
GAEs and the background turbulence can be of interest and
has to be studied.

Appendix A. Effect of second order corrections to
the parallel electric field on anomalous electron
diffusion

As the GAE amplitude increases linear approximation for the
derived parallel electric field, equations (5) and (6), may not be
accurate beyond some α value. Since the effect of E‖ is strong,
it is important to investigate such a possibility. We have done
two independent checks to address it.

First, E‖ is forced to be zero for each particle on its orbit
in the equations of motion [18] during the numerical run.
Such procedure shows identical results to the baseline cases
presented. The problem with it is that the electrostatic potential
is not computed using the equation E‖ to higher orders and,
thus, changes electron Hamiltonian.

The second method is to directly compute the second order
contributions. It allows for self-consistent evaluation of the
electrostatic potential to satisfy the ideal MHD requirement
E‖ = 0 to that second order in α. This method after
implementation in the ORBIT code produces again almost
identical results to the ones presented in this paper. We derive
the expression for φ hereafter, where we employ the same
notations as in [18].

Let us expand the electrostatic potential

φ = φ0 + φ1, (A1)

where φ0 is the linear in α 
 1 approximation and φ1 is the
second order correction. The linear part of the electrostatic
potential satisfies

∇‖φ0 = iω

c
αB0, (A2)

which results in equation (6). The second order correction can
be found from the following equation

∇‖φ1 = −δB

B0
∇φ0 +

iω

c
αδB‖, (A3)

where higher order terms were ignored.
We also have for the parallel to the magnetic field operator

∇‖ = 1

B0J
(∂θ + q∂ϕ),

where J is the Jacobian satisfying the case of the Boozer
equilibrium B2J = I + gq and g = B0ϕR. Using
equation (A2) we find that only δB⊥ contributes and

∇‖φ1 = −∇⊥φ0

B0
[∇α × B0 + α∇ × B0]. (A4)

After some algebra and assuming α = ∑
j αj sin Pj ,

where Pj is the phase, we find

JB0∇φ1 =
∑
j ′,j

(
I + gq

n′q − m′

)′

ψ

ωj ′αj ′ sin Pj ′

×
[

∇ψ2

X2
αjnJ cos Pj + mgαj cos Pj

]

− ωαj ′ sin Pj ′αj cos Pj [g′B2
0J + Jgp′]

− αj ′ sin Pj ′φ0j n cos PjJ∇ ∇ψ

X2

− αj ′ sin Pj ′φ0jm cos Pjg
′, (A5)

10



Nucl. Fusion 50 (2010) 084012 N.N. Gorelenkov et al

where primes in the mode numbers and frequency mean that
they are related to j ′ sum.
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