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Comparison between spectra of short-scale density fluctuations measured with coherent
electromagnetic scattering experiments and those extracted from space-resolved numerical
simulations is affected by a number of systematic errors. These include the locality of scattering
measurements, the different domain covered �space-resolved simulations versus wavenumber
resolved measurements�, and the stationarity of simulated nonlinear spectra. To bridge the gap
between theory-simulations and experiments, a synthetic diagnostic for high-k scattering
measurements has been developed. This synthetic scattering predicts the propagation of the beam in
an anisotropic, inhomogeneous plasma and accounts for the spatial variation of the instrumental
transfer function. The latter, in particular, is proven to provide an important calibration factor not
only for the simulated spectra, but also for the measured ones, allowing the use of the synthetic
diagnostic in predictive mode. Results from a case study for National Spherical Torus Experiment
plasmas using high-k tangential scattering system �Smith et al., Rev. Sci. Instrum. 75, 3840 �2004��
and the gyrokinetic tokamak simulation code �Wang et al., Phys. Plasmas 13, 092505 �2006�� are
presented. © 2010 American Institute of Physics. �doi:10.1063/1.3492715�

I. INTRODUCTION

Microturbulence can cause anomalous transport in mag-
netically confined plasmas. For instance, fluctuations with
perpendicular wavelengths at the ion gyroradius scale, such
as ion temperature gradient driven instabilities and trapped
electron modes, can lead to anomalous level of both ion and
electron heat transport. Interestingly, the National Spherical
Torus Experiment1 �NSTX� exhibits examples in which those
low-k instabilities at ion gyroradius scale are predicted to be
stable, when the stabilizing effects of mean E�B shear are
properly taken into account.2–4 Since ion thermal transport in
those plasmas was near to neoclassical levels, while electron
thermal transport remain highly anomalous, shorter scale in-
stabilities in the range of electron gyroradius �ETG�, which
are less affected by large scale mean E�B and contribute
mainly to electron thermal transport, were considered as a
strong candidate.

In response to a need for resolving the paradigm of
transport in tokamaks and motivated by the predictions of
numerical turbulence simulations with increasing level of so-
phistication, a number of new diagnostics for turbulence
measurements have been developed to characterize the cor-
relation length and spectral amplitude of fluctuations over a
wide range of spatial scales, spanning from the system size
down to dissipation scales at the electron gyroradius.5–9

Recent experiments on NSTX, based on coherent scat-
tering of electromagnetic waves, have revealed the presence
of short-scale density fluctuations, whose spectra peak at fre-
quencies and wavenumbers that are consistent with ETG
instabilities.10–13 It was found that the power spectrum of

fluctuations follows a power law ��k�
−4.5� dependence both

in the case of inboard and outboard measurements despite of
the electron temperature being three times higher in the
former case.11 A first comparison with nonlinear ETG simu-
lations has been attempted in the case of the gyrokinetic
tokamak simulation �GTS� code, a global code, run in real-
istic tokamak configuration.14 Measured and simulated spec-
tra are qualitatively similar, both showing a power scaling
law, although the simulated spectra appear to be less steep
than the measured ones.11,15

To bridge the gap between theory-simulations and ex-
periments a synthetic diagnostic for high-k scattering mea-
surements has been developed and tested on the GTS simu-
lations for a plasma case study on NSTX. In order to
decrease discrepancies between models and experiments, to
disentangle fortuitous agreement, to differentiate between
different models, and also in response to principles and best
practices urged by the U.S. Transport Task Force Working
Group on Verification and Validation,16,17 synthetic diagnos-
tics are playing an increasingly important role in turbulence
validation.18,19,16,17 Reproducing the instrumental spatial and
temporal transfer function, they mimic the characteristics of
measurements, reproducing the diagnostic uncertainties aris-
ing from sensitivities and resolution limitations, and replicate
plasma modeling inherent in signal interpretation.

In this work we discuss the systematic errors that occur
in the comparison between density fluctuations measured
with a scattering diagnostic �resolved in the wavenumber
domain� and those generated by nonlinear simulation �re-
solved in the spatio-temporal domain� and present a model
that eliminates the major sources of uncertainties that may
lead to a fortuitous agreement. The paper is organized asa�Electronic mail: fpoli@pppl.gov.
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follows. Section II summarizes the principles of coherent
scattering of electromagnetic waves in anisotropic plasmas
and discusses measured and simulated fluctuations, as well
as the issues related to theory-experiment comparison. Based
on the expression of the measured, scattered electric field,
the structure of the synthetic diagnostic is illustrated in Sec.
III. Sources of uncertainties and systematic errors in the
computation of the synthetic spectra are discussed in Sec. IV,
while the implications of these results for theory-experiment
comparison are discussed in Sec. V.

II. MEASURED AND SIMULATED DENSITY
FLUCTUATIONS

Coherent scattering of high frequency electromagnetic
waves is a powerful technique for detection of short-scale
density perturbations.6,20 The frequency and wavenumber
�k ,�� of fluctuations must satisfy the conservation of energy
and momentum

� = �s − �i k = ks − ki, �1�

where subscripts i and s refer to the incident and scattered
wave. Under the experimental conditions on NSTX, where
�i /2�=280 GHz and drift wave fluctuations have frequen-
cies typically below a few megahertz, we have �s��i and
ks�ki. The scattering angle �s must therefore satisfy the
Bragg condition

k � 2ki sin��s/2� . �2�

For a Gaussian beam with waist a, the wavenumber reso-
lution of measured fluctuations depends on the beam spec-
trum G����=exp�−��

2 /�2�, where �=2 /a and �� is the
wavenumber perpendicular to the direction of propagation
�which is distinct from k�, the wavenumber perpendicular to
the magnetic field�. In tokamaks, where turbulence is highly
anisotropic and fluctuations have a small component along
the magnetic field, the collection efficiency and the spatial
resolution are affected by the geometry of injection because
small variations in the magnetic field direction can detune
the scattering receiver.6,20 The collection efficiency is opti-
mized when the wave front of the incident beam coincides
with the plane of propagation of fluctuations.

In addition to the spatial variation in the magnetic field
pitch angle, the collection efficiency also depends on the
mismatch in the scattering angle. If the receiving antenna is
positioned for collecting with maximum efficiency the waves
scattered from a given point, with angle �0, those scattered
from a second point will be collected with a relative effi-
ciency that depends on ��=�−�0. The efficiency will
strongly decrease for incidence angles outside the viewing
angle of the receiving antenna. For small scattering angles
and for oblique propagation, a condition that is satisfied in
the present experimental setup, and using ks�ki, the instru-
mental selectivity function can be derived replacing ��

�ki�, where � is the angle between the wave vector aligned
with the center of the detecting antenna and a generic wave
vector scattered at a different position

cos � = cos�� − �0� − 2 sin �0 sin � sin2�	
/2� . �3�

The full derivation can be found in Refs. 6 and 21. Equation
�3� explicitly contains two contributions: the difference in
scattering angle ��−�0� and the spatial variation in the mag-
netic field pitch angle 	
. This relation is valid in general for
oblique propagation and for fluctuations with all possible
wavenumbers scattered at different locations along the probe
beam. It will be used to reconstruct the profile of �kr ,k��
measured at the location of the detecting antennas, as dis-
cussed in Sec. III B.

A. Measured density fluctuations

On NSTX, fluctuations with wavenumbers in the range
of 5–20 cm−1 can be detected injecting a microwave beam,
with frequency of 280 GHz, tangentially to the magnetic
field, with an inclination of 5° below the equatorial
plane.22–24 The beam is collimated before entering the vessel
and it can be directed to different plasma radii, through a
translatable, rotatable mirror, with scattered radiation col-
lected at both positive and negative scattering angles, over a
20° range. With this geometry, the scattering region can be
positioned to measure the core �inboard launch configura-
tion� or the edge �outboard launch configuration� fluctua-
tions. The geometry of injection and detection for the experi-
ments considered in this work is sketched in Fig. 1.

The probe and scattered waves lie nearly on the equato-
rial plane, so that the wave vectors of detected fluctuations
are mainly perpendicular to magnetic surfaces, with a radial
component about four times larger than the poloidal compo-
nent. Five detection antennas measure density fluctuations
associated with perpendicular wavenumbers in the range
�k��dk��, where k� is determined by solving ray tracing
equations and dk� depends on the beam waist and on the
detection geometry, as it will be discussed in Sec. III B. By
simultaneously adjusting the launch and collection mirror
angles, the system can be used to fill in the wavenumber
gaps between channels on a shot-to-shot basis.

The in-phase I�t� and quadrature Q�t� components of the
signal are digitized at 7.5 MHz, with density fluctuations in
the form

ñHK�k,t� = I�t� + ıQ�t� = A�t�eı��t�, �4�

where A�t� and ��t� represent possible modulation of a pure
carrier wave sin�2�ft�. Combining measurements at differ-
ent scattering angles �i.e., associated with different values of
k�� the spectral index  can be extracted from a discrete
representation of the wavenumber spectrum P�k���k�

−. An
example is shown in Fig. 2, for a NSTX He plasma, with
BT=5.5 kG, IP=600 kA, heated by 2 MW of radio-
frequency power, and reversed q profile �q0−qmin=0.8�. At
300 ms the electron density and temperature peaking values
are, respectively, ne=1.4�1013 cm−3 and Te=3.3 keV. The
wavenumber spectrum follows a power law �k�

−, with 
= �4.23�0.08�, a value close to what already found for simi-
lar plasmas.11 The spectra have been computed during a time
window of 10 ms, centered about 0.3 s. The frequency spec-
trum associated with k��11 cm−1 is shown in Fig. 2�a�.
The large spike measured at zero frequency, the so-called
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stray light, is due to multiple reflections and it is an unavoid-
able contribution present in optical systems. The measured
frequency spectra are broad and asymmetric, with turbulent
fluctuations propagating along the electron diamagnetic di-
rection, which, in this work, corresponds to positive frequen-
cies.

B. Simulated density fluctuations

Nonlinear, global simulations have been run with the
GTS code in realistic tokamak geometry, for input back-
ground profiles at time t=0.3 s, over an annulus of plasma
approximately 400�e�7 cm wide �measured at midplane�,
centered at r /a�0.3��=0.265�, in the region covered by the
high-k scattering measurements �see Fig. 3�. Overall para-
metric dependence of onset condition for ETG instabilities
can be found in the work by Jenko et al.,25 who summarized
results from many linear simulation results in terms of pre-
vious analytic formulas.26,27 GTS nonlinear simulations show
that ETG turbulence level and associated electron transport
are also very sensitive to the values of Zeff and magnetic
shear.

The evolution of electrostatic potential and density per-
turbations is evolved from the linear phase throughout the
nonlinear saturated phase for 104 time steps, for a total of

22 �s, on each poloidal plane along a field-line-following
mesh.14 Along the poloidal direction ���r� is uniform on a
flux surface in magnetic coordinates, while it varies over
different flux surfaces. The separation between flux surfaces
and the value of ���r� is such that, when measured in real
coordinates and at midplane, it is correlated with the local
electron gyroradius.14

A three-dimensional view of density fluctuations during
the nonlinear phase is shown in Fig. 4, together with the
mean squared value, averaged over each flux surface. For
this particular set of equilibrium profiles, fluctuation inten-
sity is highest at two radial locations. Most nonlinear gyro-
kinetic simulations reported that ETG turbulence develops
into a nonlinearly saturated state dominated by radially elon-
gated eddies, called streamers, visible in Fig. 4 at R
�1.2 m. These streamers are expected to enhance the elec-
tron heat diffusivity25,28 of plasmas beyond the mixing length
estimate based gyroBohm level, on the order of
��e /a��cTe /eB�, which is too low to be experimentally rel-
evant, while the enhancement factor varies significantly de-
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FIG. 1. �Color online� Sketch of the torus from the top, showing the geom-
etry of injection and the collection mirror �CM� for measurement of inboard
fluctuations for the case considered. Scattered beam �SB� and probe beam
�PB� are indicated. Numbers along the probe beam indicate the position at
which the wave fronts shown in Fig. 6 have been computed.
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FIG. 2. �a� Frequency spectrum associated with fluctuations at k�

=11 cm−1, averaged during a time window of 10 ms, centered at 0.3 s. �b�
Wavenumber spectrum, averaged during the same time window and inte-
grated over frequencies.
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pending on simulation methods and the case studied.29–32

Simulations are carried out over time steps 	t
=0.1LT /vth, where LT= 	� ln Te	−1 is the electron temperature
gradient scale length and vth=
Te /me is the electron thermal
velocity. For the case under study the time resolution is 	t
=2.19�10−9 s, although for computational efficiency the
numerical output is stored every ten time steps, which corre-
spond to a sampling rate of about 46 MHz, still six times
higher than in the experiments. The decimation of data could
in principle cause aliasing of those components with fre-
quencies higher than �10	t�−1. In practice this is not an issue
in the case of drift-wave fluctuations, whose typical frequen-
cies are well below the ion cyclotron frequency, which is
about 26 MHz for the helium plasma considered in the
present experiment. The frequency distribution of normal-
ized density fluctuations, calculated at midplane using the
nominal time resolution 	t, is shown in Fig. 5, for two dif-
ferent radial locations: at R�1.2 m, where fluctuations
peak, and at R�1.23 m. Spectral components of interest
have frequencies below 10−2 of the Nyquist frequency and
the drop in amplitude with respect to the peaking value is
about 10−2 at 23 MHz.

C. Possible approaches to a comparison and sources
of uncertainties

Comparison between theory and measurements should
be done in the �k ,�� domain, combining the information on
the maximum spectral amplitude in wavenumber and fre-
quency space and the spectral index extracted from the time
or frequency averaged wavenumber spectra P�k��. Wave-
number spectra from simulations have an advantage of span-
ning almost three orders of magnitude in k. Provided simu-
lations are run for a time sufficiently long to reach nonlinear
saturation, statistically robust fluctuation spectra can be
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FIG. 3. �Color online� Electron temperature �a� and density �b� profile,
measured at t=0.3 s with a Thomson scattering diagnostic and used as input
for the GTS simulations. The shaded stripe indicates the plasma region
covered by the simulation.
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FIG. 4. �Color� �a� Three dimensional view of density fluctuations, com-
puted with the GTS code, in an annulus of plasma 400�e wide, during the
nonlinear phase, showing the presence of radially elongated streamers �by
Kwan-Liu Ma, Chad Jones, and Chris Ho, UC Davis, as part of the SciDAC
Ultrascale Visualization Institute�. �b� Mean squared value of density fluc-
tuations, computed over each flux surface and for R�R0, normalized to the
average density.
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FIG. 5. �Color online� Frequency spectra, computed at midplane at
R=1.2 m �black� and at R=1.23 m, over 600 time steps, using the nominal
time resolution 	t=2�10−9 s. The vertical line indicates the
Nyquist frequency associated with the time series decimated by a
factor of 10.
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found. The full �kr ,k� ,k
 ,�� spectrum can be reconstructed
and the perpendicular wavenumber can be calculated from
the individual components across the magnetic field. Con-
versely, a scattering diagnostic measures density fluctuations
associated with discrete values of the perpendicular wave-
number. Only a few points are available during a plasma
discharge, although gaps in the measured k� can be filled by
adjusting the direction of injection and detection. The radial
and poloidal components of wavenumber are identified from
the geometry of scattering using ray tracing equations and
the reconstructed magnetic equilibrium. Systematic errors
may come from uncertainties in the measured background
density profile, or from imperfect mapping of magnetic to-
pology to laboratory coordinates, from restrictions on equi-
librium specification and its modeling. These same errors
likely affect both experiments and models, since the same
plasma profiles and magnetic equilibrium are used as an in-
put to run the JSOLVER equilibrium solver33 to get a high-
resolution equilibrium reconstruction.

A first attempt of comparison between the spectra P�k��
measured at normalized radius r /a=0.3 and the simulated
spectra at midplane P�kr� has recently been done.11 Although
a qualitative agreement was found, with both spectra follow-
ing a power law dependence, this comparison is not conclu-
sive. For each value of k� that satisfies the Bragg’s condition
�2�, only a limited range of �kr ,k�� satisfy the momentum
conservation Eq. �1�. These values should be selected from
the simulated spectrum for a meaningful comparison and fil-
tered through the response function of the high-k scattering
diagnostic.

A comparison based on the frequency spectra is more
straightforward because peaks in the simulated spectra, either
in the �kr ,k� ,�� or in the �k� ,�� domain, can be contrasted
to peaks in the frequency spectra measured at the receiving
positions. A limitation might be represented by the total du-
ration of simulations, which should be long enough to re-
solve significant spectral components at the lowest frequen-
cies in the measured spectrum.

III. STRUCTURE OF THE SYNTHETIC DIAGNOSTIC

The ingredients needed to a synthetic diagnostic for co-
herent scattering experiments can be obtained from the ex-
pression of the retarded field, scattered from a single particle
in the dipole approximation.34 For a monochromatic, inci-
dent wave

Ei�r,t� = Ei�r�eı�ki·r−�it� �5�

and using the conservation of energy and momentum �1�, the
frequency spectrum of the field scattered during a finite time
interval T �at distance x�, integrated over the particle distri-
bution function, is given by34

Es��s� =
re

x
eiksx� · �

T

dt��
V

d3r�Ei�r��eı��t�−k·r��ñ�r�,t�� ,

�6�

where �= ŝ� ŝ� � ŝŝ−1 in the dipole approximation,34 re is
the classic radius of an electron, and ŝ identifies the direction

of scattering. This integral represents the Fourier transform
of density fluctuations over the scattering volume V and dur-
ing the scattering time T, weighted by the intensity profile
Ei�r� of the beam.

Equation �6� identifies three separate contributions in the
synthetic high-k scattering: the computation of wavenumber
and frequency spectra from space and time resolved density
fluctuations, the characterization of the scattering volume
�position and extension�, and the identification of the mea-
sured fluctuation wavenumbers from the scattering geometry.
The three parts are separately described below, starting from
the ray tracing equations, which represent a central part of
the synthetic high-k scattering, because they provide the in-
formation needed for the computation and the calibration of
spectra from the instrumental selectivity function.

A. Ray tracing

The electric field �5�, solution of the wave equation, can
be written as35

E = E0eı�k0S−�t�, �7�

where k0 is the wavenumber in vacuum, E0 is a slowly vary-
ing function of space and S=R+ iI is the complex eikonal
function, which, in the quasioptical approximation, leads to
the complex eikonal equation

��S�2 = N2, �8�

where N=N�x ,k� ,�� is the refractive index of the aniso-
tropic and inhomogeneous plasma. The propagation of the
beam, initially Gaussian with waist a, is followed by solving
the ray tracing equations36

dx

dt
= −

�D/�k�

�D/��
= vg, �9a�

dk�

dt
=

�D/�x

�D/��
. �9b�

The dispersion relation D�x ,k� ,�� is associated with the real
part of the eikonal equation and, defining k=k�+ ık�=k0�S,
it can be written as37,38

D�x,k�,�� = �k��2 − �

c
�2

�N�x,k�,��2 + ��I�2� . �10�

The imaginary part of the eikonal equation, vg ·�I=0, simply
states that the intensity of the beam is constant along each
ray path. For high frequency electromagnetic waves, the ion
dynamics can be neglected and the refractive index can be
expressed, in the cold plasma approximation, by the
Appleton–Hartree expression.39 The term ��I�2 introduces a
dependence of the dispersion relation on the toroidal coordi-
nate, even in axisymmetric configurations, so that the toroi-
dal component of the wave vector, k
, is no longer a con-
stant. On the initial wave front the term ��I�2 is determined
analytically. On successive wave fronts the propagation of
the beam is guided by the central ray, the only ray for which
the imaginary part is zero, and the term ��I�2 and its deriva-
tives are calculated along the beam trajectory following the
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method proposed by Nowak.38 Details of the procedure are
not repeated herein.

Because of the high frequency of the beam, the spread-
ing is small and the wave front at the location of scattering
can be still assumed of Gaussian form, as shown in Fig. 6,
where the wave fronts at the scattering location and approxi-
mately 96 cm downstream are compared with the circular,
initial wave front. This eases the computation of the Fourier
spectra because the intensity profile of the beam can be cal-
culated analytically. The relative variation of ki measured
inside the scattering volume, with respect to the central ray,
is about 5�10−5; the variation in the components of ki along
z and along R are instead, respectively, 1% and 50%. A con-
sequence is that the error made in the estimate of the mea-
sured wavenumber is negligible when calculated from the
central rays and using the full beam, while the width of the
measured fluctuation spectrum depends on the geometry and
it differs from the estimated 2a−1, as discussed in the follow-
ing section.

B. Selection of wavenumbers

The ray tracing equations are solved for the injected
beam and also for a single ray that initiates from the center of
each detector and whose direction is determined by the ori-
entation and the center of curvature of the collecting mirror
�see Fig. 1�. The position of the scattering volume is found at
the geometrical intersection of incident and scattered beams.
First, we find on the equatorial plane the distance of mini-
mum approach between the central rays, which provides a
guessing value for the scattering angle and for the toroidal
location of scattering, which is used to select a portion of the
incident beam of length 2a�sin �s�−1 �see Fig. 7�.

Second, we calculate the reference values �0 and 
0 to
be used in Eq. �3�. For each detector, the direction of scat-
tering is kept fixed and parallel to the central, scattered ray,
ks,0. The value of �0 is computed as the average of the angles
between ks,0 and all the vectors �ki� within a cylinder of
diameter equal to the size of the exit window. To account for
the amplitude profile of the beam at the scattering location,
the average is weighted by a Gaussian function. Third, the
instrumental selectivity function is computed from Eq. �3�
inside the overlapping volume for all the rays and for all the
values of �ki� that result from the ray tracing equations. Fig-
ure 7 shows the results in the case of the detector that mea-
sures fluctuations with wavenumbers centered at k�

�7.2 cm−1. For this wavenumber the toroidal extension of
the overlapping region between the incident and the scattered
beam is about 47 cm. Compared to this estimate, which
would apply for isotropic turbulence, the effective scattering
region is highly localized in the toroidal �2.3 cm� and in the
radial �3 cm� direction, as seen in Fig. 7. Interestingly, while
the length of the overlapping region varies of about 20 cm
when k� increases from 7.2 to 14.2 cm−1, the instrumental
selectivity function �ISF� maintains high spatial localization,
with variations in the radial and toroidal width of only a few
millimeters. We note that the radial footprint of the scattering
region, as reconstructed herein, is smaller than the diameter
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FIG. 6. �Color online� Wave front at the center of the scattering volume and
at 96 cm downstream the direction of propagation �dots�, compared with the
initial Gaussian wave front �black�. The positions of the wave fronts along
the probe beam are indicated in Fig. 1.
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of the probe beam �2a�; as a consequence the wavenumber
width will be larger than the value of 2 /a�0.7 cm−1 esti-
mated from a Gaussian beam waist �see Table I�.

There is no explicit dependence on the vertical coordi-
nate, which is expected because the scattering geometry is
mainly on the equatorial plane. Since the central rays of
probe and receiving beams are not aligned though, the center
of the detecting window is not aligned with the axis of the
incident beam; this may affect the measured wavenumber
spectrum P�k��. The ISF has been therefore modified to take
into account the size and orientation of the exit window,
which is modeled by a two-dimensional function, flat across
the window extension and falling to zero close to the edge,
more smoothly than a boxcar window to account for the fact
that waves outside the viewing cylinder may fall within the
aperture cone of the window and being detected.

It is likely that similar values of k are measured at dif-
ferent locations inside the overlapping volume, where the
Bragg’s condition is satisfied for given ki and �s, although
they will be detected with a different efficiency, depending
on �. The ISF, which is a function of the cylindrical coordi-
nates �R ,
 ,z�, can be used to weight the values of �kr ,k��,
measured at each location along the ray path and inside the
overlapping volume. This allows to reconstruct the function
F�kr ,k��, which represents the distribution of the expected
wavenumbers measured by each detector. The function
F�kr ,k�� is constructed from the ISF as follows

F�kr,k�� = �
j,k,m

I�rI��Fj,k,m. �11�

Here, I�r and I�� are the discrete equivalent of the Kronecker
	 function, defined as

I�r,�� = �1 k̄r,� � kr,� + �k̄r,�

0 otherwise.
� �12�

The indices �j ,k� identify individual rays on each wave front,
from their radial and poloidal position, while m identifies the
toroidal angle along each ray path. From the scattered and
incident waves, the wave vector components of measured
fluctuations are first computed in the cylindrical frame
�R ,
 ,z� from Eq. �1�, k=ks−ki; then the components along
the radial and the diamagnetic direction �kr ,k�� are calcu-
lated using the reconstructed magnetic equilibrium.

Figure 8 shows F�kr ,k�� for the three detectors and Table
I lists the value of kr and k� and the respective wavenumber

width. While the bin width �k̄r,� affects the absolute ampli-
tude for each detector, the relative efficiency between detec-
tors, computed as the ratio of Ftot=�kr,k�

F�kr ,k�� for each
detector to the detector with maximum amplitude, varies less
than 1% when the bin width is varied of a factor 4. The Ftot

gives a measure of the total power collected by a detector,
based only on geometrical considerations. For the plasma
parameters and the geometry of launching and injection used

TABLE I. Values of wavenumber �units of cm−1� and scattering angle �units of rad� for the three scattered
beams shown in Fig. 1, computed from a fit over the ISF and as intersection of the central rays of probe and
scattered beam.

Ch kr �kr k� �k� k� �k� �s

3 7.41 2.7 7.7 0.7 0.132

4 10.84 2.92 11.2 0.7 0.193 Central rays

5 14.12 3.75 14.6 0.7 0.251

3 7.0 0.7 1.5 0.4 7.2 0.8 0.126

4 10.7 0.9 2.4 0.5 11.0 1.0 0.191 ISF

5 14.1 0.8 3.2 0.5 14.5 0.9 0.251
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FIG. 8. �Color online� F�kr ,k�� computed from the ISF for the three detectors.
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in this work, the collection efficiency of k�=11 cm−1 and
k�=14.5 cm−1 is, respectively, 87% and 67% with respect to
k�=7.2 cm−1. The effect of including the size of the exit
window in the computation of the ISF is shown in Fig. 9; it
affects the extrema of the k� spectrum. The histograms
shown in Fig. 8 have been computed over the same grid

�k̄r , k̄�� used for the computation of the wavenumber spectra
from simulations. This allows to use F�kr ,k��, normalized to
its maximum, as a mask for the simulated P�kr ,k�� spectra.
For each detector, the resulting spectrum is then integrated
over �kr ,k�� and corrected for the reduced efficiency. A con-
sequence of the different detection efficiency is that it pro-
vides an artificial slope in the spectra, which is not included
in the absolute calibration of the detectors and that should be
taken into account also in the measured spectra. For the ge-
ometry of injection and detection considered in this work,
the relative Ptot follows a power law k

�

�−0.59�0.06�; this factor
flattens the measured spectra, whose spectral index  should
therefore be corrected from 4.23 to 3.64.

C. Computation of spectra from simulations

Density fluctuations are computed over 64 poloidal
planes, toroidally separated about 10 cm in the outboard re-
gion; this is longer than the toroidal extension of the scatter-
ing volume, which is comparable to twice the beam waist.
Since along the magnetic field the wavelength is much
longer than across the magnetic field, within the domain of
integration of Eq. �6� fluctuations can be assumed to be con-
stant along the toroidal direction and an integration over ad-
jacent planes is not required. Wavenumber and frequency
spectra can be computed independently over individual po-
loidal planes on parallel processors to decrease execution
time. They will be averaged out only at a successive stage for
better statistical significance and to reduce the fluctuation
noise level.

For each poloidal plane, the computation of wavenumber
and frequency spectra is performed over three successive
steps, using only one dimensional fast Fourier transforms
and one dimensional interpolations. The simulation grid is
highly dense along the diamagnetic direction �see Fig. 10�,
which represents the natural direction of propagation of drift
wave perturbations. Since the number of grid points changes
over adjacent flux surfaces, each surface must be analyzed
separately. The first step, the computation of the Fourier
components along �, ñ�r ,k� , t�, involves Nt�N� operations,
where Nt and N� are, respectively, the number of time steps
and of flux surfaces. Since the arc length along the diamag-
netic direction is not constant in real coordinates �R ,z�, an
interpolation along each flux surface is required before com-
putation of the Fourier transform. A new “rectified” trajec-
tory � is constructed along the diamagnetic direction using
the existing grid, where the distance between neighbor points
is approximated with the geometrical distance d� j

=
�Rj+1−Rj�2+ �zj+1−zj�2. Density fluctuations are then in-
terpolated onto a new grid, with a coarser, uniform step,
which is the same for each flux surface, to guarantee that the
Nyquist value of the poloidal wavenumber is the same for all
flux surfaces. After interpolation and before computation of
the Fourier Transforms, density fluctuations are multiplied
by the intensity profile of the beam, previously interpolated
over the simulation grid.

Having selected the radial and the diamagnetic direction
as our orthogonal reference system, the dependence of the
poloidal wavenumber component on R is eliminated. Fourier
components ñ�r ,k� , t� are only a function of the distance be-
tween flux surfaces, which, at midplane, is given. Since the
radial step at midplane is not uniform, an interpolation of the
amplitude and phase of ñ�r ,k� , t� for each value of k� would
be required before computing the kr components. In addition
to multiply by three the number of operations, this interpo-
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FIG. 9. �kr
F�kr ,k�� for the detector measuring k�=7.2 cm−1. The function

F�kr ,k�� has been normalized to its maximum before performing the sum.
The thin curve is the result without taking into account the size of the exit
window in the ISF, while the thick curve includes the size of the exit
window.
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lation introduces errors at the boundaries of large-scale co-
herent structures, where the phase shift may change from a
constant, spatially defined value, to a value that is associated
to incoherent fluctuations and oscillates between ��. This
effect is shown in Fig. 11: the apparent structure in kr at k�

�5 cm−1 is mostly due to jumps in the phase shift along the
radial direction. Although this effect can be reduced by av-
eraging spectra over planes, a better procedure is to prepro-
cess density fluctuations in flux coordinates and interpolate

them onto a new grid ��̂ , �̂�. The separation between the new

flux surfaces ��̂ is chosen to generate in real space a uni-
form radial grid at midplane. The new poloidal grid is arbi-
trary and it is constructed using a step coarser than the origi-
nal one, yet dense enough over each flux surface to minimize
errors in the construction of � from the curved, diamagnetic
path. If the Fourier Transform along � has been computed
using the same number of points over each flux surface, the
computation of ñ�kr ,k� , t� is a straightforward operation, per-
formed for each value of k� and for each time step.

The total number of operations required to compute the
wavenumber spectra depends on the spatial grid, which af-
fects the Nyquist wavenumber, and on the number of points
used for the computation of the Fourier transform, which
affects the wavenumber resolution. Efficiency can be in-
creased by interpolating data onto a coarser grid, taking care
that the resolution in space is sufficient to resolve the small-
est scales of interest. The computation of frequency spectra
is the last of the three Fourier operations. The Fourier com-
ponents ñ�kr ,k� , t� are first filtered through the ISF for all the
detectors, to extract the measured �kr ,k�� and then integrated
over wavenumbers

ñS
j �k�,t� = �

kr,k�

ñ�kr,k�,t�Fj�kr,k�� j = 1, . . . 5. �13�

Here ñS
j �k� , t� are the synthetic density fluctuations, i.e., the

time series of density fluctuations associated with selected
perpendicular wavenumbers, measured at the location of in-

dividual detectors. They represent the simulation equivalent
of the measured density fluctuations. The frequency spectra
for the three channels, computed from ñS

j �k� , t�, are com-
pared in Fig. 12. Measured spectra �a� broaden with increas-
ing wavenumber and have maximum amplitude just below 1
MHz. Conversely, simulated spectra �b� are much narrower,
although a slight widening is visible between the lowest k�

and the other two wavenumbers. The peaking frequency in
the simulated spectra should be corrected for a Doppler shift
component induced by the background E�B flow, which,
for this experiment, is approximately 0.5 MHz toward higher
frequencies for the component at the highest wavenumber. It
is noteworthy that frequency peak with a proper E�B Dop-
pler shift can be used to identify the measured fluctuations
against theoretical predictions.40

The discrepancy in the broadening of the spectrum could
be due, for example, to a different evolutionary stage. Mea-
sured turbulence is usually in an advanced, saturated state,
where the dominant instability has had enough time to satu-
rate and interact with other modes. The resulting spectra are
naturally broad, but in most cases still centered at the fre-
quency value of the underlying instability. On the other hand,
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numerical simulations usually begin at the linear stage of
instabilities and end not very long after the postnonlinear
saturation phase. Thus, they usually exhibit narrower spectra.
It should also be noted that the center of the scattering vol-
ume illuminates the inner annulus of structures, which are
likely in an earlier evolutionary stage compared to the large
annulus at R=1.20 m. When computed at this latter location,
the frequency spectra appear slightly broader.

IV. SYSTEMATIC ERRORS IN THE COMPUTATION OF
SYNTHETIC SPECTRA

There are different sources of uncertainties and system-
atic errors in the computation of synthetic spectra. They may
arise from errors in the measured profiles, in the integration
of measured profiles onto magnetic coordinates, or from an
imperfect mapping of magnetic topology to laboratory coor-
dinates. All of them affect the results of ray tracing equations
and thus the predicted position of the scattering volume and
the wavenumbers estimated from the intersection of incident
and scattered beams.

The more significant errors are those associated with the
extension of the scattering volume and with the total simu-
lation runtime. The latter affects the spectra in two ways: the
minimum frequency that can be resolved and, more impor-
tant, the value of the spectral index. The slope of wavenum-
ber spectra, and therefore the spectral index value, depends
in fact on the evolutionary stage of turbulence. A transfer of
energy from small to large scales is observed in the GTS
simulations during the nonlinear phase and spectra progres-
sively peak at smaller values of 	k�	,15 as Fig. 13 shows. Here
we plot the kr and k� integrated from P�kr ,k�� during three
time slices during the nonlinear phase.

Figure 14�a� shows the evolution of the spectral index
during the nonlinear phase, extracted from the synthetic
P�k�� spectra during 17 time windows of duration 0.4 �s
each. The spectral index increases in absolute value during
the nonlinear phase from �1.1 to �2.7. The steepening
of the spectra is mostly due to an increase in power in the
range of small perpendicular wavenumbers, as shown in Fig.
14�b�, where the evolution of P�k�� is plotted for the three
channels. If spectra are computed before a stationary phase is
reached, the spectral index will be systematically lower in
absolute value. Herein the need for running simulations for a
time sufficiently long that the scaling in the inertial range is
statistically robust.

The position of the scattering volume has no significant
effect on the synthetic P�k��, at least for this simulation run.
When computed over a region centered on the streamers at
R=1.20 m �i.e., a beam waist distance from the real center
of scattering�, differences in the value of P�k�� vary from
3% to 6% between the smallest and the largest wavenumber.
This is due to the fact that the high-k scattering measures
values of k� much smaller than those at which simulated
spectra peak, as shown in the inset in Fig. 11. Fluctuations at
scales comparable or larger than the inverse beam waist
� /a�1 cm−1 are strongly reduced in amplitude by the
Gaussian windowing. Differences in the wavenumber spectra
in this range are therefore negligible. Since errors in the po-

sition of the scattering volume given by imperfect magnetic
mapping or experimental uncertainties will be likely smaller
than the beam waist, the consequent uncertainties in the final
spectra are negligible.

While the position of the scattering volume does not
significantly affect the synthetic spectra, differences can be
remarkably large if the illumination profile of the beam is not
correctly taken into account, as shown in Fig. 14�c�. Here the
spectra have been computed over half cross-section, on the
low field side, but the ISF has been used to extract the syn-
thetic power for the three detectors. Compared to �b�, where
the spectra have been computed over the scattering volume,
the wavenumber spectra do not follow a power law, and the
power associated with the central detector is higher than that
associated with the other two. This is due to the fact that
large scale fluctuations, not reduced by the Gaussian ampli-
tude of the beam, are resolved by the Fourier analysis and
affect the final spectrum at the lowest wavenumber values.
Interestingly, frequency spectra for these simulations are
minimal affected by the size of the scattering volume.

Another important source of error arises when neglect-
ing the ISF. As discussed in Sec. III B, the detection effi-
ciency decreases with increasing wavenumber, i.e., for in-
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creasing scattering angle with respect to the direction of
injection. The relative Ftot for different detectors should
therefore be taken into account when filtering the spectra
from simulations. Two cases are compared in Fig. 15: in the

first case wavenumbers are selected from the results of ray
tracing equations, as the values given by the intersection be-
tween central rays �see Table I�. Spectra P�k�� are then com-
puted as the integrated power spectrum in the range of
�kr ,k�� with half width �k=2 /a�0.7. In the second case, the
wavenumber spectra are multiplied by F�kr ,k�� and normal-
ized by the ratio of F�kr ,k�� for the different channels. In
both cases, spectra have been computed during a time win-
dow of 4 �s, having discarded the first half of the time
series. The spectral index, estimated from the synthetic spec-
tra is �2.28�0.04�, yet lower in absolute value than the mea-
sured 3.64.

V. CONCLUSIONS

The comparison between density fluctuations from glo-
bal, nonlinear, gyrokinetic simulations and those measured
by coherent scattering experiments is affected by a number
of systematic errors. The largest sources of uncertainty come
from the localization of scattering measurements, from the
simulation runtime and from the different wavenumber range
covered. The growth rate of ETG instabilities is high and
measured turbulence is expected to be in a fully saturated
state, with spectral slope well defined in the inertial range.
Simulations should be run for a time sufficiently long to
guarantee saturation of spectra, otherwise the calculated
spectral index could be significantly different. Simulated
spectra cover almost three orders of magnitude in �kr ,k��,
while scattering measurements are local in space and over a
limited range of perpendicular wavenumbers, a subset of the
full �kr ,k�� space covered by simulations. The spectral index
will be inevitably different. Simulated spectra peak at values
of poloidal wavenumbers much higher than those measured
by the high-k scattering diagnostic. It is possible that the
measured spectrum is not representative of the ETG turbu-
lence and that, with the present experimental configuration, it
would be difficult to validate numerical codes against experi-
ments only based on the slope of the wavenumber spectrum.

When simulated spectra are filtered through the ISF and
the finite extension of the scattering volume is taken into
account, a closer agreement is found between measurements
and simulations. An important issue for code and data vali-
dation arises from the combined effect of the finite extension
of the region of scattering and the low value of k� measured
with the present layout, together with the dependence of the
detection efficiency on the scattering angle. The first two
result in a power law dependence of the spectra also in cases
where spectra are not sloped, the second causes a steepening
of simulated wavenumber spectra and a flattening of mea-
sured spectra. These two effects could explain why, for ex-
ample, the same spectral index was measured both in the
case of inboard and outboard measurements, despite of the
electron temperature being so different.11 It is noteworthy
that the measured frequency spectra for the two injection
configurations looked instead well distinct, suggesting that
frequency spectra might be more representative than wave-
number spectra for theoretical model validations. All these
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issues should be explored over other theoretical models and
simulations, run for different experimental configurations.
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