

Supported by

ASC Chapter Discussion

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics Old Dominion** ORNL PPPL **Princeton U** Purdue U SNL Think Tank. Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

Stefan Gerhardt

July 23rd, 2012

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res, Kiev loffe Inst TRINITI **Chonbuk Natl U** NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

- Goal: Develop the basis for steady state operations and axisymmetric control for next-step STs, while helping resolve key scenario and control issues for ITER
- Research elements (and goals)
 - Scenario development for NSTX-U
 - Axisymmetric control development
 - Event handing and discharge termination automation
 - Scenario physics for next step devices.

 Goal: Develop the basis for steady state operations and axisymmetric control for next-step STs, while helping resolve key scenario and control issues for ITER

Research elements (and goals)

- Scenario development for NSTX-U
 - Demonstrate 100% non-inductive operation in stationary conditions, for multiple τ_{CR}
 - Develop scenarios for physics studies at high P_{inj}, I_P, and B_T, accessing low collisionality and challenging divertor control solutions.
 - Assess HHFW heating and EBW H&CD for advance scenarios
 - Exploit potentially new regimes such as EPH, ITB, or those provided by Li PFCs.
- Axisymmetric control development
- Event handing and discharge termination automation
- Scenario physics for next step devices.

- Goal: Develop the basis for steady state operations and axisymmetric control for next-step STs, while helping resolve key scenario and control issues for ITER
- Research elements (and goals)
 - Scenario development for NSTX-U
 - Axisymmetric control development
 - Event handing and discharge termination automation
 - Develop realtime methods of detecting imminent disruptions in a high- β ST plasma.
 - Determine optimal, automated discharge termination strategies.
 - Scenario physics for next step devices.

- Goal: Develop the basis for steady state operations and axisymmetric control for next-step STs, while helping resolve key scenario and control issues for ITER
- Research elements (and goals)
 - Scenario development for NSTX-U
 - Axisymmetric control development
 - Develop robust algorithms for shape and position control relevant to next-step STs.
 - Develop methods to obtain & maintain favorable current and rotation profiles, using ST relevant actuators such as NB H&CD, NTV, HHFW heating, and EBWCD
 - Implement divertor control strategies to optimize pumping efficiencies while regulating the heat flux to manageable levels (SFD, radiation).
 - Event handing and discharge termination automation
 - Scenario physics for next step devices.

- Goal: Develop the basis for steady state operations and axisymmetric control for next-step STs, while helping resolve key scenario and control issues for ITER
- Research elements (and goals)
 - Scenario development for NSTX-U
 - Axisymmetric control development
 - Event handing and discharge termination automation
 - Scenario physics for next step devices.
 - Understand the conditions for classical beam current drive, and exploit anomalies for scenario development.
 - Determine the q and rotation profiles that simultaneously optimize confinement and stability.
 - Integrate pedestal control tools at steady state optimization.
 - Validate predictive models for thermal and fast ion transport in the high- β_{N} steady-state regime.