TSG review of NSTX-U 5 year plan outline

Wednesday, July 25, 2012

PPPL - B318

O O O A B A		•
9:30AM	J. Menard	Overview
9. JUAIVI	i ivienaru	
<i>31307111</i>	31 111C11G1G	OVCIVICIV

10:00AM J. Park Macroscopic Stability

10:40AM Y. Ren Transport and Turbulence

11:20AM Vlad S. Boundary Physics

11:55AM Break / BPO res comm/ lunch

1:30PM M. Jaworski Plasma-Material Interactions and Plasma Facing Components

2:10PM M. Podestà Energetic Particles

2:50PM G. Taylor Wave Heating and Current Drive

3:30PM R. Raman Plasma Formation and Current Ramp-up

4:10PM S. Gerhardt Advanced Scenarios and Control

Coll of Wm & Mary

General Atomics

Johns Hopkins U

Nova Photonics

Old Dominion

Princeton U

Think Tank, Inc.

Purdue U

UC Davis

UC Irvine

U Colorado

U Maryland

U Rochester

U Tennessee

U Washington

X Science LLC

U Wisconsin

U Illinois

U Tulsa

UCLA

UCSD

Columbia U **CompX**

FIU

INL

LANL

LLNL

MIT

ORNL

PPPL

SNL

Lodestar

Lehigh U

Overview of 5 year plan process

Jon Menard

For the NSTX-U Team

TSG review of 5 year plan outline **PPPL B318**

July 25, 2012

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U **NFRI** KAIST **POSTECH** Seoul Natl U **ASIPP** CIEMAT **FOM Inst DIFFER** ENEA, Frascati CEA, Cadarache IPP, Jülich

IPP, Garching

ASCR, Czech Rep

Schedule for 5 year planning preparation

- April/May: Presented initial ideas to PAC-31, got feedback
- June-August 2012 formulate/finalize plan elements and outline, identify/finalize authors, begin writing chapters
- October 2012 First drafts of plan chapters due
- Nov-Dec 2012 internal review/revision/editing of plan
- Jan/Feb 2013 5 yr plan presentation 'dry-run' to PAC-33
- Plan presented to review committee and FES Mar/Apr 2013

Near-term schedule for 5 year plan preparation

- Early July: J. Menard distributed overall chapter outline including main topics and tentative lead/responsible authors
- First ½ of July: TSG leaders modified/extended outline and held TSG meetings as needed to discuss
- Second ½ of July: Team-wide meeting(s) led by JEM and all TSG leaders to review/finalize the overall 5 year plan outline
- July/August: Initiate chapter writing
 - First task (by end of August) for each chapter writer will be to draft a chapter introduction summarizing how NSTX-U research program will:
 - Support burning plasma science
 - Address critical challenges for long-pulse/steady-state operation including plasma-wall interactions and materials
 - Address fusion materials science and harnessing fusion power (i.e. FNSF)

Goals for this meeting

- Want a good enough outline so we can begin writing chapters and minimize any wasted effort
- Goal today is to review plan for consistency and organization
 - Try to eliminate redundancy
 - Make sure we don't miss important elements/ideas for plan
- At this meeting, we'd like the chapter leaders to present:
 - 1-2 page summary of your high-level research thrusts/goals
 - 1 page (or more) timeline(s) showing physics goals + needed tools
 - Quickly page through chapter outlines indicating the topics & authors
- JEM and Chapter/TSG leader(s) will take notes of discussion to capture any important decisions/revisions

Chapter structure

- Overview of goals and plans
 - Establish predictive capability for the performance of FNSF and ITER
 - Overview of Research Thrusts
- Research Plans
 - Generally, organized by thrusts, and temporally for each topic
- Tool Summary
 - Don't need extensive descriptions of tools
 - Rely primarily on Timeline graphic

Next-steps

- Following this meeting, chapter authors should revise their chapters incorporating comments from this meeting
- Revised chapter outlines due 1 week from today
- JEM will then review the changes, and generate full revised outline no later than mid August
 - Will then circulate to entire team for comment
 - Chapter authors should begin drafting text
 - Should also incorporate comments from PAC report
- May need 1 more team-wide meeting to discuss facility plans
- Jon/Stan/Masa will request periodic TSG meetings throughout Aug/Sept/Oct for chapter writing status reports
- Aug/Sep are good months for writing (i.e.before IAEA, APS)

Draft timeline of long-range plan for NSTX-U

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 $1.5 \rightarrow 2$ MA, $1s \rightarrow 5-10s$ Advanced PFCs, 5-10s \rightarrow 20s **Upgrade Outage** 0.3 - 0.50.5 - 1**New Center-Stack MA CHI** 0.2-0.4 MA **Extend NBI duration** up to 1 MA 2nd NBI or implement 2-4 MW off-axis EBW H&CD plasma gun plasma gun ECH/EBW 1MW-New Center-stack Diagnostics for high-Z wall studies **Divertor Divertor Thomson** cryo-pump U.S. FNSF All High-Z **Hot High-Z FW** U + LU or L conceptual **PFCs** PFCs ` Mo divertor Mo divertor design Flowing Li divertor or **Upward Full toroidal** including flowing Li granule LiTER injector limiter module divertor aspect ratio and divertor **Enhanced** NCC coils NCC SPA RFA/RWM optimization upgrade sensors 2nd NBI δB PCI or other High k_e polarimetry intermediate-k HHFW feedthru & **HHFW straps Dedicated EHO** limiter upgrade for EHO, *AE or *AE antenna Rotation pedestal Control q_{divertor} control integration control control control

Notes on Chapter timelines

- You do NOT need to write extensive dedicated text for tools
 - This is what the timelines are for
- For activities that literally point/lead to a 5 year goal, or continue throughout the 5 year plan period after being initiated, use a right arrow:

 | Identify key local transport | Identify key local transport | Identify key local transport | Identify appropriate reduced model | Identify appropriate redu
- For activities/tools that have a definite start/end/completion year, use a rectangle:
 New FIR high-k_θ scattering system
- Rectangles are good in that they indicate activities we plan to actually "finish" in a definite time period
 - Use arrows for physics activities are more open-ended
- Use multiple time-lines if you cannot fit it all onto 1 page
- Ideally, each chapter timeline would be "square" to fit well into written plan (Word/portrait) & presentations (PPT/landscape)

Table of contents: Chapter indexing and suggested authors

First author listed is responsible for chapter organization, assigning/overseeing sub-chapter co-authorship, and overall completion of chapter

- 1. Overview of the NSTX Upgrade Research Plan for 2014-2018
 - a. Menard, Kaye, Ono, TSG leaders
- 2. Research Goals and Plans for Macroscopic Stability
 - a. Park, Berkery, Boozer, Sabbagh, Menard, Gerhardt
- 3. Research Goals and Plans for Transport and Turbulence
 - a. **Ren**, Guttenfelder, Hammett, Kaye, Yuh, Smith
- 4. Research Goals and Plans for Boundary Physics
 - a. Soukhanovskii, Diallo, Stotler, Chang, Maingi, Skinner, Jaworski, Canik, Ono
- 5. Research Goals and Plans for Plasma-Material Interactions and Plasma Facing Components
 - a. Jaworski, Skinner, Maingi, Ono, Soukhanovskii, Diallo, Stotler, Chang, Canik
- 6. Research Goals and Plans for Energetic Particles
 - a. **Podesta**, Fredrickson, Gorelenkov, Crocker, Heidbrink
- 7. Research Goals and Plans for Wave Heating and Current Drive
 - a. **Taylor**, Hosea, Perkins, Phillips, Bertelli
- 8. Research Goals and Plans for Plasma Formation and Current Ramp-up
 - a. Raman, Mueller, Jardin, Taylor, Gerhardt
- 9. Research Goals and Plans for Plasma Sustainment: Advanced Scenarios and Control
 - a. Gerhardt, Kolemen, Gates, Mueller, Erikson
- 10. NSTX-U Facility Status and Proposed Upgrades
 - a. Ono, Gerhardt, Kaita, Stratton, TSG leaders
- 11. NSTX-U Collaborator Research Plans by Institution
 - a. Existing and potential NSTX-U collaborators, edited by Menard

1. Overview of the NSTX Upgrade Research Plan for 2014-2018

- 1.1. Introduction
- 1.2. Mission elements of the NSTX-U research program (Menard)
 - 1.2.1. Advance ST as candidate for Fusion Nuclear Science Facility (FNSF)
 - 1.2.2. Develop solutions for plasma-material interface
 - 1.2.3. Advance toroidal confinement physics predictive capability for ITER and beyond
 - 1.2.4. Develop ST as fusion energy system
- 1.3. Unique Parameter Regimes Accessed by NSTX and NSTX-U (Menard + TSGs)
 - 1.3.1. Macroscopic Stability (Park)
 - 1.3.2. Transport and Turbulence (Ren)
 - 1.3.3. Boundary Physics
 - 1.3.3.1. H-mode ped. formation (LH), transport, stability (Kaye, Diallo, Maingi)
 - 1.3.3.2. SOL physics (Zweben)
 - 1.3.3.3. Divertor physics (Soukhanovskii)
 - 1.3.3.4. Particle control
 - 1.3.4. Plasma Material Interactions and Plasma Facing Components
 - 1.3.4.1. Lithium-based plasma facing component R&D (Jaworski, Skinner)
 - 1.3.4.2. High-Z PFC R&D (Jaworski, Maingi, Soukhanovskii)
 - 1.3.5. Energetic Particles (Podesta, Fredrickson, Gorelenkov)
 - 1.3.5.1. *AE instability drive
 - 1.3.5.2. Importance of *AE to NBI
 - 1.3.6. Wave heating and current drive (Taylor, Phillips)
 - 1.3.6.1. High-harmonic fast wave
 - 1.3.6.2. ECH/EBW
 - 1.3.7. Plasma formation and current ramp-up (Raman, Mueller)
 - 1.3.8. Plasma sustainment, advance scenarios and Control (Gerhardt)
- 1.4. Contributions to tokamak physics and ITER (Kaye)
 - 1.4.1. ITPA physics basis for ITER
 - 1.4.2. Contributions to ITER Design and Operation
- 1.5. Fusion Energy Science Applications of the ST (Menard, Ono)
 - 1.5.1. Development and prototyping of advanced divertor and first-wall solutions
 - 1.5.2. ST-based Fusion Nuclear Science Facility / Component Test Facility
 - 1.5.3. ST-based Pilot Plant
- 1.6. Gaps Between Present and Future STs (Menard)
- 1.7. Summary of Research Goals and Opportunities in NSTX-U (Menard + TSGs)
 - 1.7.1. Overview
 - 1.7.2. Macroscopic Stability
 - 1.7.3. Transport and Turbulence
 - 1.7.4. Boundary Physics
 - 1.7.5. PMI and PFC
 - 1.7.6. Energetic Particles
 - 1.7.7. Wave heating and current drive
 - 1.7.8. Plasma formation and current ramp-up
 - 1.7.9. Plasma sustainment, advanced scenarios and control
- 1.8. NSTX-U Long-term Goals (Years 5-10) (Menard, Ono, Kaye)
- 1.9. NSTX-U Scientific Organizational Structure (Menard, Kaye)