

Supported by

Diagnostics supporting advanced global mode stabilization studies

Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U ORNL PPPL **Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

S.A. Sabbagh¹, J.W. Berkery¹ J.M. Bialek¹, T.E. Evans², S.P. Gerhardt³, Y.S. Park¹, K. Tritz⁴

¹Department of Applied Physics, Columbia University, NY, NY ²General Atomics, San Diego, CA ³Plasma Physics Laboratory, Princeton University, Princeton, NJ ⁴Johns-Hopkins University, Baltimore, MD

NSTX-U Facility Enhancement Brainstorming Meeting February 8th, 2012

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI NFRI KAIST POSTECH ASIPP ENEA, Frascati **CEA**, Cadarache **IPP, Jülich IPP**, Garching ASCR, Czech Rep

Office of

Science

Some new diagnostics would significantly enhance proposed MHD stability studies

Magnetic

- Low frequency MHD sensors over a wider poloidal range
 - <u>Midplane</u>: for global mode/RWM diagnosis are our eigenfunction expectations from MHD correct, especially during mode growth? WIII internal sensors show key difference compared to external LMD?
 - <u>Closer to divertor</u>: diagnose, and perhaps feed back upon the "divertor" mode with the NCC
 - Direct use in RWM state space controller: for both physics studies of the observer model, and improved control – defined needs for ITER, etc.

Kinetic

- SXR sensors for global mode feedback
 - Magnetic sensors problematic in future high neutron environments
 - Typically aimed at RWM still a major application. Proposed before for NSTX (JHU), but not funded
 - Also use in real-time to detect internal (global) kinks using NBI, plasma rotation as actuators to alter mode stability in feedback; disruption detection

Multi-mode RWM computation shows 2^{nd} eigenmode component has dominant amplitude at high β_N in NSTX stabilizing structure

δBⁿ from wall, multi-mode response

D NSTX RWM not stabilized by ω_{ϕ}

- Computed growth time consistent with experiment
- 2nd eigenmode ("divertor") has larger amplitude than ballooning eigenmode

D NSTX RWM stabilized by ω_{ϕ}

- Ballooning eigenmode amplitude decreases relative to "divertor" mode
- Computed RWM rotation ~ 41 Hz, close to experimental value ~ 30 Hz

ITER scenario IV multi-mode spectrum

Significant spectrum for n = 1 and 2 BP9.00059 J. Bialek, et al.; see poster for detail

NSTX-U Facility Enhancement Brainstorming Meeting (S.A. Sabbagh, et al.)