

- Capabilities are being explored for NSTX-U...
 - ~1 MA startup plasma, appropriate for OH, NBI, and/or RF sustainment
 - Well-defined startup procedures and plasma development scenarios
 - Unobtrusive and retractable injection hardware
- Pegasus results are evolving the conceptual design:
 - Arc gun needed to generate the "seed" plasma
 - Formation of the poloidal field null is sensitive the geometry
 - Outer-PF induction provides finite Volt-seconds
 - Passive electrodes may be the optimum tool for providing maximum effective Volt-seconds with high Taylor limit for I_p
 - Electrodes and guns require different fuelling \rightarrow active gas control
 - Local limiters mitigate impurities (Pegasus $Z_{eff} \le 2$ during HI; ~1 in OH)

Conceptual design for the NSTX-U startup system

- Gun/electrode injector:
 - Single 8+ inch port off midplane
 - Retractable behind gate valve
 - Combines gun with large electrode
 - Piezoelectric gas control
 - Local limiter structure

Power supplies:

- Bias comparable to Pegasus (1-2 kV; 15 kA; Δt ~ 1 ms)
- Arc plasma uses simple PFN supply
- Robust operating scenarios
 - Especially null formation and I_p buildup
 - Pegasus experiments informing and validating scenario development

A. J. Redd, NSTX-U Facility Brainstorming Meeting, Feb 8, 2012

