

MPTS Long Term Plans

Colorado Sch Mines

Columbia U

College W&M

CompX

General Atomics

Johns Hopkins U

LANL

LLNL

Lodestar

MIT

Nova Photonics

New York U

Old Dominion U

ORNL

PPPL

PSI

Princeton U

Purdue U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

UCLA

UCSD

U Colorado

U Maryland

U Rochester

U Washington

U Wisconsin

B.P. LeBlanc, A. Diallo

PPPL, Princeton, NJ 08543, USA

NSTX-U facility enhancement brainstorm meeting

February 8th, 2012

Chubu U Hiroshima U Hyogo U Kyushu U Kyushu Tokai U Niigata U **U** Tokyo Hebrew U loffe Inst

Culham Sci Ctr

U St. Andrews

York U

Fukui U

Kyoto U

NIFS

JAEA

TRINITI

KBSI

KAIST

ASIPP

POSTECH

IPP, Jülich

U Quebec

IPP, Garching

ENEA. Frascati

CEA, Cadarache

ASCR, Czech Rep

RRC Kurchatov Inst

* Work supported by USA DoE contract DE-AC02-09CH11466

CAMAC Replacement

- MPTS is a crucial diagnostic which is entirely CAMAC based
 - This is a liability that needs to be addressed in order to avoid interruption of MPTS coverage
- A modern data-acquisition electronics would permit to:
 - Do away with the our obsolete sample and hold electronics very hard to replace parts
 - Permit higher time rate of acquisition more later
 - Enable better understanding of stray laser light by using fast digitizers
 - Likely to enable dust measurements Mie scattering and stray laser light are expected to have different time signatures

Laser Upgrade with Bursting Capability

- The MPTS configuration for NSTX-U includes input and exit flight tubes capable of handling three laser beams
- Propose installing a third laser with bursting capability:
 - Operation at 30Hz until burst of 10 to 20 pulses at a repetition rate of up to 2kHz the latter limit is set by the current data acquisition – could be faster with modern DAQ electronics
 - Similar to work done by Den Hartog at U. of Wisconsin
 - The other two exiting lasers would continue to operate at their normal rate *i.e.* 2 x 30Hz

Improved Core and Edge Accuracy

- Modify the filter set of some of the core polychromators in order to obtained 5% error bar at 10keV
- Modify the filter set of polychromators seeing the SOL in order to reduce error bar

Present system expected to have poor resolution at 10keV

Improved SOL Spatial Resolution

- Install a second window and optics viewing the SOL e.g. at bay G
- Radial channels interwoven with exiting channels
 - Also provide channels with large tangency radii in order to improve Zeffective measurement

Additional Laser Beam Path: Vertical

- Combined horizontal and vertical $T_e(R,t)$ and $n_e(R,T)$ profiles would provide unequaled capability in equilibrium reconstruction
 - 2D internal constrain
 - e.g. local elongation measurement
- Reuse existing laser beams or implement new laser(s)
- New collection optics and detection system