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Operational parameters and limits of ITER

High priority issues:

!  Lifetime of plasma-facing components

!  Dust

!  Tritium inventory

Consequences for plasma scenarios and

material choice

Outline
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ITER PFC Environment

Beryllium

Tungsten

Carbon

Initial reference material mix (H, D phases):

! 700m2 Be first wall and start-up limiter

modules

! 100m2 W divertor dome and baffle region

! 50m2 Carbon Fibre Composite (CFC) for

the divertor strike point areas

Present strategy for ITER operation

! change to a full W-divertor before DT

operation

! Decide on specific time for change on the

basis of experience on hydrogen retention

and dust

! all-W as future DEMO relevant choice
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Beryllium

Tungsten

Carbon

Predicted edge plasma conditions:

!   B2-EIRENE simulations

(A. Kukushkin)

" total wall flux 8x1022 (D+T)/s

!   power flux scaling (A. Kallenbach)

" total wall flux 1-5x1023 (D+T)/s

!   scaling with nSOL, !n and vconv

(B. Lipschultz)

" total wall flux !7x1023 (D+T)/s

!  used here:

total wall flux 1-5x1023 (D+T)/s

divertor flux 5x1024 (D+T)/s

flux distribution from B2-EIRENE

ITER PFC Environment
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Physical sputtering

understood and well

predictable

Chemical sputtering

widely investigated and

well described

The multi-step process

can be strongly modified

by material mixing

E. Salonen, Phys.Rev.B 2001, M. Balden, J.Nucl.Mat. 2000

Erosion assessment from laboratory data:
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Be erosion flux (m-2 s-1)

Lifetime of PFCs

Be first wall erosion is

calculated based on B2-

Eirene results

Toroidal peaking may reduce

wetted area to  " 50m2

For W erosion due to impurity

sputtering is taken into

account;

here: 0.1% Ar in SOL plasma

Wall erosion in steady state:

0.12 262x1020

0.05W     average

peak poloidal

  8
488x1021

0.12Be  average

      peak 50m2

g/shotatoms/snm/sWall material
see K. Schmid P1-88

Erosion of Be first wall may

become a lifetime problem for

inhomogeneous loading
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CFC divertor erosion is

calculated using ERO based

on B2-Eirene results
(including 0.1% Be2+, but reduction

of chemical erosion due to Be not

included)

Divertor erosion in steady state:

76x10190.3

484x10202W     gross

             net

34x10201

3304x1022100CFC gross

             net

g/shotatoms/snm/sDivertor mat.
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 net layer

see A. Kirschner P2-20

W erosion mainly due to Ar

impurities (0.1 %) (DIVIMP)
CFC divertor, Be wall

Lifetime of PFCs
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ELM induced erosion: CFC
Lifetime of PFCs

Results from Russian plasma

simulators:

Recommended threshold for damage
0.5 MJm-2 " adopted by ITER

Efficient mitigation methods needed
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Crack formation was observed at

energy densities # 0.7 MJ/m2.

Repetitive sub-threshold ELM

investigations ongoing in JUDITH2
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Disruption induced erosion:

Lifetime of PFCs

ITER assumptions:

30 disruptions in about 2000 discharges

10 % of melt layer lost in the case of W divertor plates

5 kg erosion per disruption

Federici, Strohmayer
RACLETTE
Riccardo, Federici
Nuclear Fusion 2005

!Vapour shielding

reduces CFC evapo-

ration by factor 10
      see S. Pestchanyi P1-97

!Predicted ITER

disruptions exceed

the 300 disruptions

lifetime limit for W

!Efficient mitigation

methods needed

Evaporation reduced

by vapour shielding
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Dust generation

Potential release in environment      " 1000 kg limit

W is the major radioactive source

 Dust contains trapped Tritium

Hydrogen production when hot dust reacts with steam

Be major contributor

with carbon:        " 6 kg C, 6 Be, 6 kg W limit

without carbon:            " 11 kg Be, 230 kg W limit

Possible pure Dust or Hydrogen/Dust explosion

Be, C, W involved

Droplets from arcingFlaking of carbon layers

Collection July 2000 Collector probes 2007

AUG

full-C and full-W phase

J. Sharpe, V. Rohde et al.,  JNM 2003

M. Balden et al, post-deadline poster 2008

Potential safety concerns:



Joachim Roth: PSI-18 Toledo, May 26, 2008

Dust generation
Total dust generation:

Assumption:

!Dust generation dominated by erosion, deposition, layer disintegration

!Conversion from erosion to dust for safety reasons: 100 %

(about 10 % in Tore Supra and JT-60U)
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Dust generation
Total dust generation:

Assumption:

!Dust generation dominated by erosion, deposition, layer disintegration

!Conversion from erosion to dust for safety reasons: 100 %

(about 10 % in Tore Supra and JT-60U)

Total dust limit not reached

before scheduled

maintenance and exchange

of divertor cassettes

What fraction of dust

resides in hot (>600°C)

areas?
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Dust generation
Dust on hot areas:

Assumption:

!On hot plasma (>600°C) wetted areas deposits and dust will only survive

in castellation

!Need to estimate the fraction of impurity deposition in gaps from

experimental data base   see A. Litnowski O-7

Hot dust estimate requires better understanding

of dust transport and gap deposition

Assume dust at hot area collects only in gaps:

Flux of Be to outer target hot zone (DIVIMP):

2$1019/m2s

Area of hot zone: 8m2

"Total Be flux: 1.6$1020/s " 1g/discharge

Gap area 2%

"Hot Be dust rate: 0.02g/discharge

" 11kg Be dust for W/Be wall in 60000 disch.
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Potential safety concerns:

Potential release in environment

In order to avoid evacuation of population     " 1000 g limit
 

Administration limit lower

previously large uncertainties in accounting

reduced uncertainties to 180 g           " 820 g

inventory in cryo-pumps           " 120 g

present administration limit      "  700 g limit

Tritium inventory
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Tritium inventory
Erosion determines co-deposition:
!Rough estimate: total net erosion rate x co-deposition concentration

!Detailed evaluation: impurity transport including re-erosion,

co-deposition concentration depending on final deposition conditions
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Co-deposition with C and Be

depends on deposition conditions:

energy, deposition rate,

temperature

see G. De Temmerman O-20

8x10– 44x1017W divertor

3.22x1021CFC

divertor

1.83x1020Be wall

g/shotatoms/s
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Implantation: D in W divertor tiles

DIFFUSE code (Causey)

predicts square root

fluence dependence with

and without n-induced

traps

Code calculations

(Ogorodnikova) based

on experiments.

n-irradiation assumes

saturation at 1%

additional trap sites.

Good agreement without n,

main uncertainties in estimate of n dpa,

damage structure and hydrogen trapping

see talks:     M. Mayer I-13: ASDEX U

     B. Lipschultz I-14: Cmod

  n effects     D. Whyte O-19

     J. Sharpe P3-65

     R. Causey P3-69

Tritium inventory
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Review for PPCF,

submitted March 2008

Sum of both processes:

comparison of

materials options

EU assessment

Tritium inventory
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Contribution to the

IAEA, Geneva 2008

Sum of both processes:

comparison of

materials options

ITPA SOL/DIV

assessment

Tritium inventory
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Hot dust, 6kg limit

Conclusions

Hot dust, 

Tritium
Hot dust

230 kg limit

Tritium in BeNumber of

discharges to

reach safety

limits:

100000

10000

1000

500000

100
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Lifetime of PFCs:
! Material properties require plasma scenarios with

mitigated ELMs <0.5 MJ/m2 and

without (or very few) disruptions   "Review by W. Fundamenski R-2

for the use of W PFCs  "Invited talk by R. Dux I-6

! Damage studies for a high number (106) of sub-threshold ELMs

! Damage studies for mitigated disruptions

Dust generation:
! More data needed on dust in tokamaks

! Dust transport to evaluate hot dust accumulation

Tritium inventory:
! Influence of n-irradiation on tritium inventories in W

! Improve experience from all-metal machines (JET ILW)

Removal methods:
! no single method sufficient

! ‘good housekeeping’ method for inventory mitigation

! Oxidation of carbon deposits              " Invited talk by J. Davis I-10

High priority PWI issues


