18th International Conference on Plasma Surface Interactions Toledo, Spain, May 26-30, 2008

Irradiation Effects in Tungsten-Base Plasma Facing Materials for ITER and Beyond

Naoaki Yoshida

Research Institute for Applied Mechanics, Kyushu University, Japan

> Advanced Diagnostics for Burning Plasmas

Introduction

Plasma Facing Materials of ITER for Initial Operation

- First wall: Be
- Divertor: CFC (for very high heat flux areas of th divertor (lower part of the vertical target)

W (upper part of the vertical divertor and the dome) In future all tungsten divertor (under the discussion)

However, these materials have still critical issues to be overcome before the utilization in ITER.

Critical Issues for W

thermo-mechanical stability under high flux pulse heat load such as ELM

--- In D-T phase ---

effects of neutrons and helium will be added

Topics of the Present Talk

Effects of neutron irradiation in W and W-base alloy

Effects of helium plasma irradiation in W

⇒Necessity of extensive R&D of advanced tungsten alloys with high resistance for neutron- and He-radiation

Effects of neutron irradiation on W and W-base alloys

Loss of Ductility by Neutron Irradiation

N-fluence dependence of DBTT :rapid increasing of DBTT by nirradiation at low dose at low temperatures, but not much for high temperatures

Need data of irradiation effects at divertor relevant higher temperatures

→ExtreMat in EU (W-base alloys, 550-600°C, 900-950°C, 3-5dpa)

Microstructure Formation by Neutron-Irr.

Neutron irradiation at 600°C to 0.15 dpa ($E_n > 1$ MeV)

Dislocation loops and voids cause hardening, especially in W.

No serious effects on mechanical properties at low dpa.

Synergistic effects with plasma particles diffusing from the surface should be examined.

Effects of helium plasma irradiation in W 1. Structure

Basic Behavior of He in W

- Very low solubility.
- Very fast thermal migration via interstitial sites (very high mobility even at R. Temp.)
- Very deep trapping in a vacancy (Large E_V^B)
- He enhances the formation of voids (bubbles) and dislocation loops even above 1000°C →hardening, embitterment
- He atoms can aggregate by themselves once get in the lattice (E>E^s) once get in the lattice (E>E^s)

Formation of Defects by sub-E_d He⁺ Irr.

0.25keV-He⁺ → W@ R. Temp. , 873K, 1073K

- Radiation induced defects are formed at very wide temperature range.
- He platelets and dislocation loop at low dose.
- He bubbles
 - become visible at high dose.
- Growth of bubbles is remarkable at 1073K.

Damage by He⁺ Causing Displacement

8keV He⁺ → W @ R.T., 873K, 1073K

Damage at High Temperature (8keV-He⁺)

8keV-He⁺ → W

1.5 × 10¹⁹He⁺/m² 1.7 × 10¹⁹He⁺/m² 3.2×10¹⁹He⁺/m² 1473K Growth of interstitial loops **1273K** 50nm $1 \times 10^{19} \text{He}^{+}/\text{m}^{2}$ $5 \times 10^{19} \text{He}^{+}/\text{m}^{2}$ $1 \times 10^{20} \text{He}^{+}/\text{m}^{2}$ $2 \times 10^{20} \text{He}^{+}/\text{m}^{2}$ 50nm 1673**K** $3 \times 10^{20} \text{He}^{+}/\text{m}^{2}$ $4 \times 10^{20} He^{+}/m^{2}$ $5 \times 10^{20} \text{He}^{+}/\text{m}^{2}$ $6 \times 10^{20} He^{+}/m^{2}$ **Growth of bubbles** А 50nm 50 nm

5keV-He⁺, 1x10²¹He⁺/m²

Damage by He Plasma at Wall in LHD

W at wall eq. position @R. Temp, discharge time=75s

Typical damage by He irradiation
Damage by charge exchange He neutral
Damage structure, depth distribution of He
Damage structure, depth distribution of He

Damage by He Plasma at Divertor in LHD

W (about 9mm away from the strike point), only one shot for ~1s

- Serious He irradiation damage
- Erosion by blistering =6.5nm

Fine Projections at Elevated Temp.

Irradiated surface is covered by meso-scale projections at wide irradiation conditions

He ion energy $\geq \sim 10 \text{eV}$, temperature $\geq \sim 900^{\circ}\text{C}$

Material (ref)	PM-W ⁽¹⁾	PM-W ⁽²⁾	PM-W ⁽³⁾	VPS-W ⁽⁴⁾
Irr. Temp.	2600K	RT →2873K	1273K	1600 K
Ion Energy	90eV	18.7keV	8keV	~10eV
Fluence (He⁺/m²)	1.0x10 ²⁶ (continuous)	3.3x10 ²³ (3.5s pulse)	1.5x10 ²² (continuous)	4x10 ²⁷ (continuous)
Surface Morphology	ວັມຫ		1 <mark>0000</mark>	100nm

(1) M.Y. Ye et al., J. Nucl. Mater. 241-243 (1997) 1243., (2) K. Tokunaga et al., J. Nucl. Mater. 329-333 (2004) 757., (3) T. Baba et al., Mater. Trans. 46 (2005) 565., (4) S. Kajita et al., Nucl. Fusion 47(2007) 1358.

Surface Morphology of He Irr. W

Sample: PM-W Ion energy: 8 keV flux: 1.5x10²²He⁺/m² Irradiation temp.: 1273 K

- Large bubbles cause local blisters at the surface
 - →surface roughing
- Holes are also formed.

He Bubbles by He Plasma Bombardment

11.3eV-He⁺ → VPS-W@1250K, 3.5x10²⁷He⁺/m²

Simulation of W Divertor

- Meso-scale objections with hollow structure like bamboo shouting (He-bubbles inside)
- This causes serious reduction of heat load resistance, dusts formation, etc.!

S. Kajita et al., Nucl. Fusion 47(2007) 1358.

Formation Processes of Meso-Scale Projections under He⁺ Irradiation

Low Energy Case

- Initiation of grooving by the movement of He bubbles to the surface.
- ② Deepening of the grooves by absorbing bubbles formed nearby.
- 3 Elongation by the crowded bubbles inside (swelling by He bubbles).

4 Blanching.

Conditions for Projection Formation

Low Temp Limit

Bubbles should be mobile and enough vacancies should be supplied:

T_{pf}> 1100K

High Temp. Limit

Nucleation rate of bubbles should be reasonably high strongly depends on He beam flux and microstructure (dislocations, grain boundaries)
He atoms should stay in the bubbles T_{pf}< latter half of stage IV (2500K?)

ο

Possible Formation Temperature T_{pf} for W 1100K <T_{pf} <2500K

How to Reduce Projection Formation

1. <u>Reduction of bubbles mobility (increase of T_{III})</u>

Diffusion Coefficient of Bubbles

$$D_b = D_s (3\tilde{U}^{4/3})/(2\partial r^4)$$

Ω: atomic volume r : bubble radius D_s : coefficient of surface diffusion

- → reduction of surface diffusion coef. D_s → alloying
- 2. <u>Reduction of E_{IS} (decrease of T_{IV}) \rightarrow alloying</u>
- 3. <u>Reduction of thermal vacancy supply</u> → Reduction of effective mobility and increase of formation energy of vacancies → addition of miner elements

There are some possibilities to satisfied the above conditions for reduction of projection formation.

Effects of helium plasma irradiation in W

2. Synergistic effects with heat load

Influence on Thermal-Shock Resistance

K. Tokunaga et al., J. Nucl. Mater. 307-311(2002) 130-134 He Pre-irradiation: 8keV-He⁺ →W@R. Temp,, 5x10²¹He/m² Heat load (electron beam); 13 MW/m², 30s

Formation of He bubbles layer → weaken thermal-shock resistance →larger erosion

Change of surface morphology

Un-irradiated

Heat load

He irradiated

Heat load (T_{max}=2500°C)

Influence of Short Pulse Heat Load on He Irradiated PM-W

He Pre-Irradiation

- 1 keV, 1.8x10²³ m⁻²
- Irr. Temp.: 773K
- Laser Irradiation
 - Q-SW mode: 50 MW/cm² (0.5 J/cm²), 10ns
 - Base Temp.:773K
 - Max. Surface Temp. (cal.):~1673K
- He Irradiated W
 - Very strong grooving and cracking along grain boundaries.
 - It is likely that He accumulated along GB's weaken them.
 - Deep penetration of He along GB.

1keV He⁺, 1.8x10²³ m⁻²

Synergistic Effects of Neutron Irradiation and He plasma Bombardment

<u>Depth Distribution of Free He</u> under Irradiation (t≤10⁴sec) calculated by using rate theory

30eV-He⁺(10²²He⁺/m²s) ⇒ W@873K 30eV-He⁺(10²²He⁺/m²s) + Neutron(P_n=1x10⁻⁶dpa/s) ⇒ W@873K

Acc. of He-V Complexes under Simultaneous Irradiation of He Plasma and Neutrons

30eV-He⁺ (10²²He⁺/m²s) + Neutron (P_n=1x10⁻⁶dpa/s) ⇒ W@873K

At the sub-surface region up to 3µm deep, large fraction of the vacancies formed by neutron irradiation are occupied by He diffusing from the surface. →Very high accumulation of He (10⁻⁴~10⁻²)

This region expands with increasing irradiation

lrr. Time (s)

This may cause serious irradiation damage at rather thick sub-surface region

What We Should Do for beyond D-T Phase? (as an Summary)

- irradiation effects of neutrons in the present W
- irradiation effects of helium plasma in the present W
- Their synergistic effects

Very critical issues for Application of W in D-T burning conditions

Evaluation of He effects under ITER condition

Genuine R&D of W-base alloys which endure neutron irradiation and helium irradiation