2-D Divertor Design Calculations for the NHTX

J. Canik, R. Maingi, L. Owen Oak Ridge National Laboratory

Princeton, NJ Nov 2, 2007

² Progress in predictions of divertor plasma characteristics in NHTX

- Introduction to NHTX
- Code description
- Detailed calculations for single configuration
 - Power scan from 10-50 MW at neped ~ 1.5e20
 - Density scan from 7.5e19 3e20 at Pheat=30 MW
 - Recycling scan from 0.9-0.99
 - Impurity radiation scans for carbon, neon, argon
- Calculations for three other configurations
- Discussion and conclusions

The development of advanced fusion reactors will require the integration of key areas of fusion science

- Four key requirements are well known:
 - 1. High thermal confinement, well confined α 's
 - 2. High plasma beta
 - 3. Steady state operation
 - 4. Solution for *reactor-level* high-heat-flux plasma-boundary interface
- The integration of advanced-reactor-level high-heat-flux handling with high confinement, high β , and steady-state operation has not been demonstrated
 - and apparently will not be demonstrated by planned long-pulse devices

NHTX mission:

"To study the integration of high-confinement, high-beta, long-pulse non-inductive plasma operation with a fusionrelevant high-power plasma-boundary interface."

J.E. Menard, Seminar at GA, 2/8/07 NHTX can lead the field in the integration necessary for successful CTF/FDF & Demo

_	R (m)	a (m)	P (MW)	P/R (MW/m)	P/S (MW/m ²)	Pulse	Г (MA)	Species	Comments	
JT-60SA	3.01	1.14	41	14	0.21	100	3.0	D	JA-EU Collaboration	
KSTAR	1.80	0.50	29	16	0.52	300	2.0	H (D)	Upgrade Capability	
LHD	3.90	0.60	10	3	0.11	10,000	-	Н	Upgrade capability	
SST-1	1.10	0.20	3	3	0.23	1000	0.2	H (D)	Initial heating	
W7-X	5.50	0.53	10	2	0.09	1800	-	Н	30MW for 10sec	
NHTX	1.00	0.55	50	50*	1.13	1000	3.5	D (DT)	Initial heating	
ITER	6.20	2.00	150	24	0.21	400-3000	15.0	DT	Not for divert	or testing
Component Test Facility Designs										
CTF (A=1.5)	1.20	0.80	58	48	0.64	weeks	12.3	DT	2 MW/m^2 neutron flux	
FDF (A=3.5)	2.49	0.71	108	43	1.61	weeks	7.0	DT	2 MW/m^2 neutron flux	
Demonstration Power Plant Designs										
ARIES-RS	5.52	1.38	514	93	1.23	months	11.3	DT	US Advanced	Tokamak
ARIES-AT	5.20	1.30	387	74	0.85	months	12.8	DT	US Advanced Technology	
ARIES-ST	3.20	2.00	624	195	0.99	months	29.0	DT	US Spherical Torus	
ARIES-CS	7.75	1.70	471	61	0.91	months	3.2	DT	US Compact Stellarator	
ITER-like	6.20	2.00	600	97	0.84	months	15.0	DT	ITER @ higher power, Q	
EU A	9.55	3.18	1246	130	0.74	months	30.0	DT	EU "modest extrapolation"	
EU B	8.60	2.87	990	115	0.73	months	28.0	DT	EU	
EU C	7.50	2.50	794	106	0.71	months	20.1	DT	EU	
EU D	6.10	2.03	577	95	0.78	months	14.1	DT	EU Advanced	
SlimCS	5.50	2.12	650	118	0.90	months	16.7	DT	JA	
CREST	7.30	2.15	692	95	0.73	months	12.0	DT	JA	

* Flux compression, low R_x/R, SND, additional power allow higher heat flux.

J.E. Menard, Seminar at GA, 2/8/07 NHTX Heating and Current Drive

- Neutral beams: 32 MW, 120 kV D₀ NBI, steerable off axis
- 18 MW RF type to be determined
- Results from NSTX, C-MOD, DIII-D will be critical to selection of RF system(s)
 - EBWCD: High efficiency, remote coupling.
 - Inside-launch 120 GHz 2nd harmonic ECCD: lower efficiency, more complex access.
 - LHCD: High efficiency, intimate coupling.
- 2MA bootstrap current at operating point
- For confidence in 3.5 MA steady-state operation, desirable to be able to drive ~ 1.5 MA with beams + RF (R₀ = 1m)

SOLPS is used to calculate SOL plasma properties

- SOLPS: Scrape Off Layer Plasma Simulation
 - 2D plasma fluid code (B2.5)
 - Plasma transport through SOL to targets
 - Monte Carlo neutrals code (Eirene)
 - Takes wall fluxes, returns neutral sources to B2
 - Two are coupled via
 - Atomic processes (ionization, recombination)
 - Plasma-wall process (recycling, sputtering)
- Used to model the edge of tokamak plasmas
 - Core parameters are an input to the code
 - Here we're interested in n, T, heat/particle fluxes at targets

6

- Pure deuterium plasmas
 - Transport of impurities not included
 - Radiation added using constant impurity concentration
- Transport
 - Classical in parallel direction
 - Anomalous transport coefficients perpendicular to B \Rightarrow NHTX: D, $\chi = 0.4$, 1.6 m²/s
- Boundary conditions used
 - Core
 - Input power fixed to values between 10 and 50 MW
 - Density fixed between 7.5x10¹⁹ and 3.0x10²⁰ m⁻³
 - Targets
 - Recycling coefficients set to 0.90-0.99 (1 elsewhere)
 - No sputtering included at this point

2-D SOL and divertor calculations completed for four different configurations

Comparison of Equilibrium to Computational Grid

NSTX

Midplane profiles at fixed core density, P = 10 - 50 MW

Ion/electron heat fluxes are larger at outboard divertor leg

Total heat flux is up 70 MW/m² at outer target

SOL plasma is sheath-limited near separatrix: T, n ~ midplane values

- Introduction to NHTX
- Code description
- Detailed calculations for single configuration
 - Power scan from 10-50 MW at neped ~ 1.5e20
 - Density scan from 7.5e19 3e20 at Pheat=30 MW
 - Recycling scan from 0.9-0.99
 - Impurity radiation scans for carbon, neon, argon
- Calculations for three other configurations
- Discussion and conclusions

Midplane profiles at fixed power (30MW), $n_{core} = 0.75-3.0e20$

Peak heat flux is fairly insensitive to separatrix density

Divertor plasma remains sheath-limited near separatrix

Recycling scan: away from separatrix, divertor moves towards high-recycling regime

Recycling scan: away from separatrix, divertor moves towards high-recycling regime

Choose an impurity and a concentration f: $n_z = f^*n_e$ Add to SOLPS radiated power density: $L_z n_e^* n_z$

NSTX

Adding impurities: SOL radiation is limited at these Te

Adding impurities shows SOL radiation is limited at these Te

- Introduction to NHTX
- Code description
- Detailed calculations for single configuration
 - Power scan from 10-50 MW at neped ~ 1.5e20
 - Density scan from 7.5e19 3e20 at Pheat=30 MW
 - Recycling scan from 0.9-0.99
 - Impurity radiation scans for carbon, neon, argon
- Calculations for three other configurations
- Discussion and conclusions

2-D SOL and divertor calculations completed for four different configurations

Variations in geometry strongly affect heat flux, divertor parameters

25

- Transport is sheath limited near separatrix in both inner and outer divertor legs
 - Peak heat flux increases roughly linearly with input power
 - Heat flux is nearly independent of density, recycling coefficient
 - High electron temperature makes radiative solution difficult
 - Needs more work self consistent impurity production/transport, etc.
 - SOL approaching conduction limit away from separatrix
 - In outer leg at higher density/recycling coefficient
 - At inner leg with low input power
- Configuration scan shows effects of flux expansion and number of divertors
 - Heat flux profiles broader with high FE
 - LSN, low FE case has very high peak heat flux

- NHTX allows a wide operational range of heat fluxes for PFC evaluation
 - Can be varied by a factor of ~ 10
 - Heat flux can be very high well above 10 MW/m²

- Results illustrate the challenge of high heat flux boundary
 - Initial modeling shows unacceptably high target temperature, little control over heat flux
 - Target geometry optimization, more sophisticated use of radiators (impurity mixes, low-power startup), etc. will be necessary to bring boundary under control

Backup

(D) NSTX

Inner midplane profiles at fixed core density, P = 10 - 50 MW

)

Basic predictions of power scan – ion temperature and atomic density

Basic predictions of recycling scan - divertor

Adding impurities shows SOL radiation is limited at these Te

Artificial Radiation Model

Fixed impurity concentration f: $n_z = f^*ne$ Radiated power is $L_z ne^*n_z$

NSTX

