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Outline

Heat load problem

Some NHTX-specific results for orientation

Divertor options
— Plate tilting
— Radiation
— Flux-surface expansion
- Snowflake divertor (1 VG; full discussion from Ryutov)
« X-divertor
— Lithium (NSTX results and prospects; kinetic edge models)

Discussion
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Future tokamaks have a major heat load problem

* For NHTX, consider max.
approx. area available on
divertors and walls

— outer div. ~1 m? each
— inner div. ~0.6 m2 each
— outer wall ~ 10 m2

*  For 50 MW input, 25 to
upper/lower divertors
gives ~16 MW/m?

« Or, if all goes to walls,
~5 MW/m?

* However, heat-flux
profiles will likely be
much more peaked
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Nominal NHTX open divertor is symmetric
double nuli

« Use UEDGE to model heat flux
with “standard” D = 0.2 m?/s
and x.; =1 m?/s

\W)
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* Highrecyling: R,=0.99, R, =1.0
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« Scan core-edge density and
power input

Vertical position (m)

Major radius (m)
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Heat flux to outer divertor is very large in

exeected oeerating range $~50 MWZ

» Electrons carry most of energy
* Results similar to Canick, but need to be more closely compared

* 1% neon fixed-concentration shows only small heat-flux reduction
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Consider case 200058 with strike-point on
outward-facing plate ,

« Here n,,, =1.5x10?°and P_,,, = 30 MW again
* Heat flux broadens and is reduced by ~x3
« Divertor density lower, T, is high; far from detachement
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Plate rotation “toward” strike-point can
induce detachment - the ITER solution

Vertical position (m)

Neutrals are roughly directed normal to plate

Pushing neutrals toward separatrix increases plasma density, recycling

Reduction of heat flux larger than cos(theta)
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transport effects can increase radiation

Radiation efficiency requires high density;

Even lithium can give substantial radiation in a “detached-like”
regime

BUT high recycling Li plate doesn’t give high enough density

Emissivity (J m3/s)
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Snowflake divertor produces a (near) 2nd order
field null for flux expansion (Ryutov, PoP ‘07

« Simple two-wire X-point model generalized
by adding another divertor wire

« Stability of configuration obtained by
operating off perfect snowflake - see Ryutov
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X-divertor utilizes multiple divertor coils to produce
a nearby flux expansion (Kotchenreuther, PoP ‘07)

« Technology may be more complicated

« Offers possibility of stabilizing MARFE formation away from
X-point and core plasma

« 1/2 radiation still localized near plates
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Three main points

« Kinetic modifications needed for edge-plasma transport
* Low-recycling (lithium) divertor (NSTX example)
— higher edge temperatures

— plate heat flux about the same

« Core contamination by lithium appears acceptable

* Developing kinetic transport codes (e.g., TEMPEST and XGC) with
be very useful here
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Parallel plasma transport is modified for a

h

ot, low-density edge

lasma

Mean-free-path A « T2/ n_and

L, is B-field-line length

When A ~ L, the velocity-
space distribution is non-
Maxwellian

Plasma heat and momentum
transport coefficients change

Sheath boundary conditions

are modified & normalized

potential e¢p/T, can decrease
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Viscosity, thermal conduction, and thermal
force are limited for long mean-free paths P

¢ Flux-limiting of transport coefficients have the form

oT,
c — T e 4 —ke|l c 2|~1/2 :

where k. is the classical heat conductivity, 8| is the distance
along B, and q; = c,nT.(2T, /m.)'/? with c, ~ 0.15.

e T hermal force term has kinetic correction of the form

0.71nV | T
(L4 Amgp/ L)

0.71??,V||Te —
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Forl > L, boundary electron loss rate is
determined by velocity-space scatterin

¢ Electron kinetic energy lost at the collisional sheath is

NVe

4

27,1, = 27T, expleds/Te)

¢ Monte Carlo simulations show that long mean-free-path regime
can be treated by the extended formula

OT.T. 2T, nve expleds/Te)
4 (14+7p/7)

where 7, is long mean-free path Pastukhov confinement time,
and 7, is the confinement time for the collisional (full velocity
loss-cone) sheath-limited regime. Here the correction factor is

LN+ 7/7) R L)L+ ac(Amgp/ L) (eds/ Te))
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Effect of low-recycling is illustrated for an
NSTX case *

Use 2D UEDGE fluid
transport with kinetic
corrections

Begin with a base-case with
high recycling (shot 109034,
Porter)

_ I:)core =2 MW

— D=0.5m?%/s,c =1.5m?/s

- R=1.0

— Wall gas albedo = 0.95

— Carbon impurity

Solutions for R=1.0, 0.9, 0.5,
and 0.2 on outer divertor only
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Low recycling increases midplane
emperatures by factor of ~2

t

Low recycling decreases
edge density for fixed
source

For R=0.2, A ~ LII

Sputtering increases for
low recycling (high T,)

Increased edge
temperature may reduce
core turbulence
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Peak divertor heat flux largely unchanged by R

- Direct energy loss from 10
escaping particles scales as " |Outer
nT T'2=nT32 at the divertor . [divertor

~

+ For high collisionality, nT ~ S
constant along B-field = 5l

— implies heat flux ~ T2 5
 However, for low recycling,
rlTlmideane >> nTldivertor !
ol_.

Radial distance from separatrix (cm)
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A substantial convective particle loss about
he outer midplane can decrease effect of R

t

Add a radial convective velocity
increasing from 10 m/s --> 100 m/s
from core --> wall

Increased wall flux gives
increased pumping (albedo=0.95) -
model dependent

Effectiveness of divertor pumping
is decreased
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Contamination of core from lithium divertor being
modeled by coupling UEDGE & WBC MC code ,

 Heat and particle flux to module
computed by UEDGE

« Temperature rise of Li surface
from heat transfer (Ulrickson)

« Sputtering of Li from U. Il
composite model (Allain et al.)

«  WBC calculates lithium source
near the divertor plate (Brooks)

« UEDGE uses this Li source to
calculate lithium density
throughout the edge region

Vertical position (m)

NSTX divertor region + Li module
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Lithium flows throughout the SOL, but core
boundary concentration appears low

« Lithium concentration peaks in Lithium concentration, n_li/n_e
outer SOL and private-flux p——————
regions rer \ 40 cm toroidal )

module (1/12.5)

Primary forces keeping Li in % VT ?

divertor are E, & hydrogen drag 2l
=

S ]
 Lower recycling good because 8 1ot -1
— Lower sputtering hydrogen flux & e
— Monotonic downward E , ; T \ 4
R=0.2 much better than R=0.9 ' A

— Higher sputtering rate is bad ° L
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Summary

« Simulating low-recycling plasmas uses known modifications to
fluid transport models

« Substantial increase in edge temperature is calculated
 Plasma convection shows some reduction of core-edge T increase
« Lithium contamination studies for NSTX begun

— Impurity screening at low R aided by E, & downward hydrogen flow
— Role of convection on Li must be included
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