

Budget Planning Meeting – FY 2005 Office of Fusion Energy Sciences Department of Energy

> March 18-19, 2003 Gaithersburg, Maryland

Columbia U Comp-X GA INEL JHU LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL **PPPL** PSI **SNL** UC Davis UC Irvine UCLA UCSD **U** Marvland **U New Mexico** U Wash U Wisc **UKAEA** Fusion Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokyo loffe Inst TRINITI **KBSI KAIST** ENEA. Frascati

NSTX Facility Capability Steadily Improved

Capabilities						
PFC bakeout	350°C					
Gas fueling	HFS/LFS					
Aspect ratio	1.27					
Elongation	2.5					
Triangularity	0.8					
Plasma Current	1.5MA					
Toroidal Field	0.6T					
NBI (100kV)	7 MW					
HHFW (30MHz)	6 MW					
- full antenna phas	se control					
Pulse Length	1s					
Reduced PF error	field					

Rapid Progress On High Beta Research

TF Fault Occurred on February 14, 2003

A TF "flags" joint separated.

Fortunately:
No serious collateral damages occurred.
TF bundle lifted out of machine without breaking high vacuum allowing important post diagnostic calibrations.

Lesson learned and move on

o A joint design weakness uncovered by this incident and through detailed analyses. (loss of contact pressure, ambiguous load path, fatigue factor - joint failed in its 5th year of operation ~10,000 cycles.)

o Improved joint with sufficient margin being designed including mockup fatigue tests of 50,000 cycles.

o TF Joint Final Design Review (inviting participants from C-MOD, MAST, DIII-D, PEGASUS, and FFOC) to be held in April.

o Once the design is complete, the fabrication is relatively rapid.

oThe TF bundle fabrication can be funded within the operation budget.

- o Significant long term benefits with good joint design:
 - Improve long term operational reliability
 - Achieve routine operations up to full parameters
 - Reduce future maintenance and repair liabilities

MHD Mode Stabilization

Confinement and Transport

Exciting Opportunities For Advanced Fluctuation Diagnostics

Non-Inductive CD Systems

Boundary Physics

NSTX Facility Utilization

Facility Plasma Operations Availability

	FY 02	FY 03	<u>FY 04</u>	<u>FY 05</u>
# of run weeks planned	12	12	21	21
# of run weeks achieved	13*	4**		
# of hours	520	160	840	840

* 90% overall facility availability achieved in FY 02

** The facility operation was interrupted due to the TF fault problem in Feb. 2003.

Participating Research Personnel

	PPPL	non-PPPL
Researchers	42	70***
Post Doc.	3	7
Grad. Students	5	5
Undergrad. Students	3	5

*** Including 15 overseas collaborating researchers from countries Japan, Russia, Korea, UK, Ukraine, and Canada in FY 03

NSTX Budget Summary (\$M)

Facilities Run weeks	FY03 12(4)	FY04 21	FY04 11	FY04	FY05 21	FY05 8	FY05
	Base	Base	10% cut	Incr.	Base	10% cut	Incr.
Facility Operation	\$15.44	\$16.95	\$15.93		\$17.21	\$15.90	
CHI Absorber							
Error Field Coils	\$0.30	\$0.25	\$0.25		\$0.25	\$0.25	
Other Upgrades		\$0.50		\$0.54			\$1.49
Facilities Total	\$15.74	\$17.70	\$16.18	\$0.54	\$17.46	\$16.15	\$1.49

Science							
PPPL Research	\$8.28	\$9.30	\$8.34		\$9.44	\$8.40	
Upgrade Diag.	\$1.00	\$1.00	\$0.58	\$0.40	\$1.20	\$0.55	\$1.05
Colla. Diag. Interf.	\$0.62	\$0.70	\$0.56	\$0.10	\$0.60	\$0.56	\$0.10
Collaborations	\$4.30	\$4.77	\$4.30	\$0.27	\$4.77	\$4.30	\$0.27
Science Total	\$1 4.2	\$15.77	\$13.78	\$0.77	\$16.01	\$13.81	\$1.42

ERWM	\$1.68	\$1.71	\$1.71		\$1.71	\$1.71	
Grand Total	\$31.62*	\$35.18	\$31.67	\$1.31	\$35.18	\$31.67	\$2.91

*Note: FY03 Base includes ~ \$1.2M Carryover from FY2002.

NSTX PPPL Personnel Staffing

- Overall PPPL staff reduced by 79 in FY 2003.
- Some reductions in FY 04 and 05.
- Without D&D, reduced flexibility to reassign technical staff within PPPL.

Incremental Funding For FY 04 - 05 Can Greatly Enhance NSTX Science Output

- Improve facility capability:
 - Implement deuterium pellet injector (FY 04)
 - Start 1 MW EBW 15 GHz tube development (FY 05)
 - Divertor cryo-pumping particle control system (FY 05)
- Improve Diagnostic capability:
 - Fast infrared camera for boundary physics (FY 04)
 - Divertor MPTS (FY 05)
- Improve facility reliability and availability
 - Spare parts and preventive maintenance.

Consequences of 10% Budget Cut In FY 04

- Significant reduction in runtime (from 21 to 11 weeks)
- Research progress slowed by almost 50%.
- NSTX staff reduction of ~ 13% or ~ 15 FTE
 - Could result in further terminations due to severance cost
- Non-labor reduction of $\sim 50\%$
 - Diagnostic components, spare parts, energy, travel, etc.
- Critical facility and diagnostic upgrades will be deferred.
 - HHFW antenna upgrade and CHI absorber null field coil power supply
 - Poloidal CHERS, Thomson scattering upgrades, Divertor Bolometer.
- Similar impact on all collaborations.

FY 05 impacted more severely due to inflation.

Summary

- FY 02 was a very productive year (one more run week than planned and 90% overall plasma availability.)
- FY02- 03 campaign produced very exciting results.
 - Record beta values achieved.

 $\beta_{\rm T} \approx 35\%$, $\beta_{\rm N} = 6$, $\beta_{\rm N} / I_{\rm i} = 10$, $\varepsilon \beta_{\rm pol} > 1$.

- − High beta and high confinement ($\beta_N H_{89P} \approx 15$) sustained for τ -pulse > τ -skin or 8 τ_E (V_{loop}~ 0.1V).
- Good progress on RWM, no wall beta limit exceeded by 30% and sustained for many resistive wall time through plasma rotation.
- FY 04-05 base budget allows significant increase in the run weeks from FY02- 03, crucial for making timely progress.
 - Improved TF will improve facility reliability and availability.
 - Physics capability rapidly ramping up to support exciting program.
 - Far more experimental proposals than run time available.

NSTX program is oriented to FESAC goals.