

NSTX Research Plan – FY03-05

NSTX research advances Configuration Optimization, Fundamental Understanding, and High Performance/Burning Plasmas

Martin Peng Oak Ridge National Laboratory, UT-Battelle, LLC

For NSTX National Research Team

Budget Planning Meeting – FY 2005 Office of Fusion Energy Sciences Department of Energy

> March 18-19, 2003 Gaithersburg, Maryland

Columbia U Comp-X GA INEL JHU LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL **PPPL** PSI **SNL** UC Davis UC Irvine UCLA UCSD **U** Maryland **U New Mexico** U Wash U Wisc **UKAEA** Fusion Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U **U** Tokyo Frascati, ENEA loffe Inst TRINITI **KBSI**

U.S. Collaborative NSTX Team members make crucial contributions

Institution	Research Topic	Institution	Research Topic
Columbia U	 MHD stability & mode control Stellar x-ray spectroscopy* 	Comp-X	CQL-3D kinetic modeling of RF heating & current drive
GA	CHI equilibrium, RF physicsPlasma control	INEL	Tile surface & dust analysis*
		Johns Hopkins U	USXR tomography & diagnostics
LANL	 Visible and infrared imaging Ultra-fast turbulence imaging CHI plasma stability modeling 	LLNL	 Edge SOL modeling Edge plasma turbulence Stellar x-ray spectroscopy*
Lodestar	 Edge plasma stability and turbulence 	MIT	ECW-EBW modelingHHFW modeling
Nova Photonics	 MSE – CIF & LIF* Ultra-fast imaging (~10⁶ /s)* 	ORNL	 RF launcher & experiments ECH-EBW launcher & exp.
NYU	Transport & RF modeling*		Edge exp.; transport modeling
PSI	 Ultrafast imaging (~10⁶ /s)* 	SNL	 Plasma-facing material*
UC Davis	FIReTIP & fluctuations		Material surface analysis*
UCSD	 Fast probe, HHFW modeling Far SOL turbulent transport 	UCLA	Reflectometry & fluctuations
		U Maryland	Transport & turbulence sim.*
U. Washington	CHI research	U New Mexico	Fast ion-plasma interactions
U Wisconsin	NSTX neoclassical modeling		

* Research cooperation funded by Theory, Technology, Diagnostic Innovations, SBIR, Plasma Science Programs

NSTX has advanced far into the new PoP ST physics regime, thanks to the available tools & capabilities

Transport & Turbulence	• NBI: $H_{97L} \rightarrow 2.7$ (L and H-mode); $H_{98y,2} \rightarrow 1.5$ (sustained)			
	• NBI: $\chi_i < \chi_{neo}$, $\chi_e >> \chi_i$, $T_i \sim 2T_e$, stiff T_e with strong $V_{\phi} \& V_{\phi}$ shear			
	• HHFW: $H_{97L} \sim 1$, T_e -profile modified – electron ITB ($T_e \rightarrow 3.7 \text{ keV}$)			
MHD	• $\beta_T \rightarrow 35\%$; $\beta_N \rightarrow 6$; $\beta_p \rightarrow A$; $\beta_N \rightarrow 10\ell_i$			
	• RWM: $\beta \rightarrow 1.3 \beta_{no-wall}$ for > $20\tau_{wall}$, coupled to V _{ϕ} and nearby conductors			
	• $V_{\phi}/V_{Alfvén} \sim 0.3$, n _e asymmetry measured consistent with theory			
	Revealing features in fast ion driven modes: TAE, CAE, etc.			
Startup & Sustainment	 HIT-II converted I_{CHI} to I_{OH}; NSTX CHI absorber improved for testing 			
	 First indication consistent with HHFW current drive expectations 			
	 V_L reduced to ~ 0.1 – 0.2 V via large bootstrap current (NBI, HHFW) 			
	• $\beta_T \rightarrow 17\%$, $\beta_N \rightarrow 5$, $\beta_p \rightarrow A$, $f_{BS} \sim 0.5$, $V_L \sim 0.1$ V, for > τ_{skin} & in 1-s pulse			
Boundary Physics	Gas Puff Imaging & scanning probe: intermittent filamentary blobs			
	 Verified inboard SOL flux tube expansion due to low A 			
Integrated Scenarios	• $\beta_T \sim 35\%$, $\beta_N \sim 5.4$, $H_{89P} \sim 1.5$ simultaneously sustained for $\geq \tau_E$			
	TRANSP, TSC, M3D, RF codes, etc. used in NSTX research			

NSTX research milestones have been organized to carry out and support 3 of the 4 IPPA MFE Thrusts

Fundamental Understanding (IPPA 3.1)

Advance understanding of plasma, the fourth state of matter, and enhance predictive capabilities, through comparison of well-diagnosed experiments, theory and simulation.

Configuration Optimization (IPPA 3.2)

Resolve outstanding scientific issues and establish reduced-cost paths to more attractive fusion energy systems by investigating a broad range of innovative magnetic confinement configurations.

High-Performance/Burning Plasmas (IPPA 3.3)

Advance understanding and innovation in high-performance plasmas, optimizing for projected power-plant requirement; and participate in a burning plasma experiment.

- A set of *Implementation Approaches* was determined by the IPPA to meet the 5-year Objectives of these thrusts.
- NSTX research milestones are organized to address them.

Research planned for FY03-05 aims to achieve the initial goals of the NSTX 5-year plan

NSTX research address IPPA Thrust 5-year objectives through the ST Implementation Approaches (3.2.1.1–7) **FY02 FY03 FY04 FY05 FY06** Exp. 13 **Fix TFC** 21 21 Runwks: 5-year "Checkpoint" 3.2.1.1. Achieve efficient heat and particle confinement (3.1.1. Transport & Turbulence) Assess effects of Measure low-k Measure hi-k high β & flow on γ turbulence turbulence 3.2.1.2. Verify stability of large-scale MHD perturbations (3.1.2. Macro Stability; 3.3.2. Hi-β Stability & Disruption) Study MHD modes Assess plasma & Study plasmas near without feedback rotation interactions "with-wall" limit 3.2.1.3. Heat high-beta over-dense plasmas & drive current (3.1.3. Wave-Particle Interactions; 3.3.3. Burning Plasmas) **Test HHFW CD** Characterize EBW Measure ΔJ from **Demonstrate** efficiency emission, est. H&CD RF, NBI & ∇p $J_{NI} = 100\%$ 3.2.1.4. Test plasma startup & sustainment with noninductive techniques (3.1.3. Wave-Particle Interactions) Test CHI Extend & analyze Test current startup sustainment to 1s initiation 3.2.1.5. Disperse edge heat flux at acceptable levels (3.1.4. Plasma Boundary Physics) Analyze edge **Characterize edge** heat fluxes of H-mode plasmas 3.2.1.6. Integrate high confinement and high beta (3.3.1. Profile Control) Assess hi $\tau_{\rm E}$ & hi $\beta_{\rm T}$ Characterize high Assess combined H-mode for >> τ_{r} **RF & NBI effectiveness** $\beta_T \& \tau_F \text{ for } > \tau_F$ 3.2.1.7. Explore spherical torus issues in directed laboratory experiments (3.1.5. General Plasma Science) Pegasus, HIT-II, CDX-U – explore new ST parameter space & technologies

MAST collaboration – EBW H&CD, boundary physics, confinement scaling, H-Mode and ELM physics BPM. 3/18-19/03

New capabilities are planned to unravel the exciting science behind transport & turbulence surprises

MHD studies aim to develop an understanding of the physics of β limiting modes to enable very high β_T , $\beta_N \& \beta_p$

HHFW is being explored as a unique tool for electron heating, current drive, and confinement studies

EBW studies will test the basis for local H&CD, NTM control, and initiation in over-dense ST plasmas

FY02	FY03	FY04	FY05			
3.2.1.3. Heat high-beta over-dense plasmas & drive current (3.1.3. Wave-Particle Interactions; 3.3.3. Burning Plasmas)						
Test HHFW CD	Characterize EBW	Measure ∆J from	Demonstrate			
efficiency	emission, est. H&CD	RF, NBI & ∇p	J _{NI} = 100%			
	FY02 Heat high-beta over-dense Test HHFW CD efficiency	FY02FY03Heat high-beta over-dense plasmas & drive curreTest HHFW CD efficiencyCharacterize EBW emission, est. H&CD	FY02FY03FY04Heat high-beta over-dense plasmas & drive current (3.1.3. Wave-Particle Int Test HHFW CD efficiencyCharacterize EBW emission, est. H&CDMeasure ΔJ from 	FY02FY03FY04FY05Heat high-beta over-dense plasmas & drive current (3.1.3. Wave-Particle Interactions; 3.3.3. BurningTest HHFW CD efficiencyCharacterize EBW emission, est. H&CDMeasure △J from RF, NBI & ∇pDemonstrate J _{NI} = 100%		

Encouraging EBW results

- Emission measured in CDX-U, NSTX, MAST, etc., consistent with theory
- H&CD: W-7AS, COMPASS-D successful
- Localized H&CD profiles predicted
- Fast T_e(R,t) measurement (Adv. Diag.)
- Much preparation needed
 - Collaboration on MAST (60 GHz, 1 MW)
 - Complete GENRAY-CQL3D scoping
 - Emission studies on NSTX in early FY04
 - Develop launch and H&CD scenarios
- 1-MW EBW at ~ 15 GHz in FY06!
 - Working with VLT to procure in FY05

EBW Receivers: CDX-U \rightarrow **NSTX**

Innovative noninductive startup and sustainment has made progress – very important to ST development

Simulations of J_{NI} = 100% plasmas identify scenarios and motivate important NSTX research topics

Boundary physics studies aim to test and develop solutions for high performance NSTX plasmas

Confinement and stability integration studies aim to test synergy among special ST properties

Pegasus, HIT-II (HIT-SI) and CDX-U plans to explore new ST parameter space and technologies

3.2.1.7. Explore spherical torus issues in directed laboratory experiments (3.1.5. General Plasma Science) Pegasus, HIT-II, CDX-U – explore new ST parameter space & enabling technologies

Pegasus plans

- MHD stability as R/a \rightarrow 1
- EBW physics in very over-dense plasmas
- Physics connections with Spheromak
- HIT-II (HIT-SI) plans
 - Steady helicity injection
 - Explore NSTX CHI improvements ideas

CDX-U plans

- Lithium surface-plasma interactions
- Support development of Liquid-Surface Module for NSTX in collaboration with VLT

HIT-II

ST physics relevance to IPPA thrusts (including Burning Plasmas) has led to broadened collaborations

- Merging database with MAST, U.K.
 - NBI H-mode, transport, τ_{E}
 - EBW H&CD (1 MW, 60 GHz), FY03
 - Divertor heat flux studies, FY03-04
 - NTM, ELM characterization
- Exploratory ST's in Japan
 - TST-2: ECW-EBW initiation
 - **TS-3,4**: FRC-like β ~1 ST plasmas
 - **HIST**: helicity injection physics
 - LATE: solenoid-free physics
- MST: electromagnetic turbulence, EBW
- Began participation in ITPA (ITER)
 - A and β effects: H-mode, ITB, ELM's & pedestal, SOL, RWM, and NTM
- DIII-D & C-Mod collaboration
 - Joint experiments on RWM, Fast ion MHD, pedestal, core confinement, edge turbulence

MAST (U.K.)

MST (U.S.)

DIII-D (U.S.)

C-Mod (U.S.)

NSTX research advances Configuration Optimization, Fundamental Understanding, and High Performance/Burning Plasmas

- Growing contributions by National Research Team to
 - Configuration Optimization
 - Fundamental Science
 - Through ITPA High-Performance/Burning Plasmas
- Results advanced far into new PoP physics regimes
 - Max β_T = 35%; β_N = 6.7 %•m•T/MA (~ 10 ℓ_i)
 - High H-factors relative to ITER confinement scalings
 - $V_{\varphi}\!/V_{Alfvén}$ ~ 0.3 and large V_{φ} shear
 - Progress toward J_NI = 100%, V_L ~ 0.1 V for > τ_{skin}
- Organized to address IPPA Implementation Approaches & objectives; milestones determined for FY03-05.
- Growing international ST & Tokamak research cooperation

Next: Ono – NSTX Operation and Upgrade Plans