

Columbia U

NSTX Research Plan – FY05-07

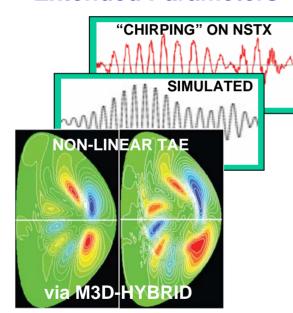
Contributing to Fusion Energy Science, Burning Plasma (ITER), & Concept Optimization

Martin Peng ORNL

For the NSTX Team

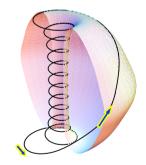
Budget Planning Meeting – FY 2007

March 15-16, 2005 Germantown, Maryland


Comp-X **General Atomics** Johns Hopkins U LANL I I NI Lodestar **Nova Photonics New York U Old Dominion U ORNL PPPL PSI** SNL **UC Davis UC Irvine UCLA** UCSD **U** Maryland **U** Rochester **U** Washington **U Wisconsin** Culham Sci Ctr Hiroshima U HIST Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo **JAERI** loffe Inst TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache IPP, Jülich IPP, Garching

U Quebec

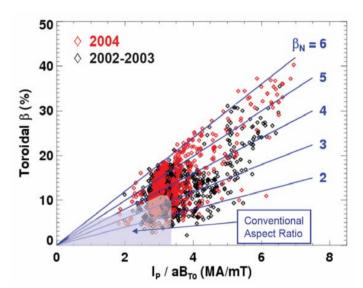
NSTX Will Advance Toroidal Plasma Science, Burning Plasma Physics, and Configuration Optimization

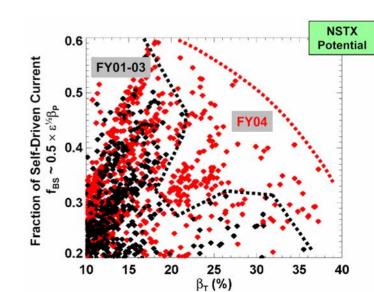

Science: Extended Parameters

Burning Plasma

Optimization: Unique & Complementary

Contribute to OFES Strategic Goals


by Addressing Scientific Topics:


- Microturbulence & Transport
- Macroscopic Stability
- Waves & Energetic Particles
- Magnetic Flux Generation
- Boundary Interactions
- Synergy & Integrated Scenarios

NSTX Had a Successful Year; Achieved 21 Run-Weeks; Made Key Progress on a Broad Scientific Front

- Expanded parameter space via improved control, shaping & operation broadening plasma science.
- Extended high beta-tau discharges with high B/S fraction to > tau-skin, with wall-stabilization of strongly rotating plasma.
- Measured RWM at substantially above no-wall limit, indicating $\omega_{crit}/\omega_{\Delta} \sim 1/q^2$, consistent with neoclassical visc.
- Measured large radial correlation length of fluctuations in core that decreases with increasing B_T and radius.
- Observed increased electron energy confinement via reversed q-shear; verified ion Internal Transport Barrier.
- Reconstructed equilibria for strong plasma rotation, constrained by isothermal electrons and MSE field pitch.
- Determined via MSE & EFIT changes in core current density resulting from variations in operating scenario.
- Observed and modeled *AE's driven by supra-Alfvénic ions, which are anticipated in ITER burning plasma.
- Measured via NPA fast ion depletion due to MHD modes.
- Identified bursts of edge plasma filaments ("blobs") as primary characteristics of ELMs of varied severity.
- Measured EBW emission from core, consistent with theory.
- Obtained first evidence of parametric ion heating by HHFW.

NSTX Prepared Three Plans for FY 2006-2007 to Deal with Present Uncertainties

Case	FY06 Rn-Wks	FY07 Rn-Wks	Accumulated	Upgrades
1	0	12	12	Minimal
2	12	12	24	Constrained
3	17	17	34	Optimized

- Case 2 in some detail
- Impact of Case 1
- Benefits of Case 3
- Summary charts of milestones as backup

Requested FY07 information for 0, 6, 12, 16, 20, & 25 run-weeks is supplied separately in hand-outs

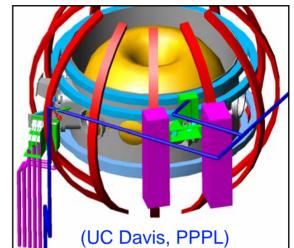
BPM, 3/15-16/05

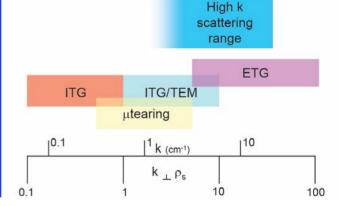
NSTX-Science-FY05-07

Transport Studies Will Emphasize High-k Turbulence and Electron Transport, Leveraging Large β , ρ^* , q-Shear

Motivation & NSTX Opportunities

- Priority Panel (T4) & world priority; TTF initiative with emphasis on extended understanding of electron scale transport
- Key remaining scaling uncertainty for ITER add to ITPA
- Large k (= $2 20 \text{ cm}^{-1}$), q-shear, ~ 3 cm spatial resolution
- Central β up to unity \rightarrow clarify electromagnetic effects


Milestones


BPM, 3/15-16/05

- FY05: test high-k μw scattering; extend MSE; q' & ∇T_e effects
- FY06: measure high-k turbulence in wide parameters
- FY07: correlate turbulence spectra with electron transport
- Extensive analysis: NL-GS2, GTC, FULL, GYRO, TRANSP

Additional Investigations

- Strengthen ITPA global ELMy H-mode & pedestal database
- iITB similarity experiments, momentum transport, with MAST
- H-mode aspect ratio comparison with DIII-D

NSTX-Science-FY05-07

1) Transport & Turbulence: Physical processes that govern heat, particle & momentum confinement

Characterize q' & ∇T_e effects on electron transport

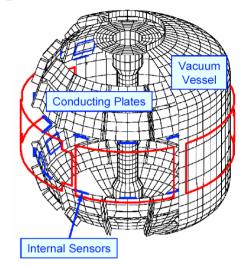
Measure high-k turbulence

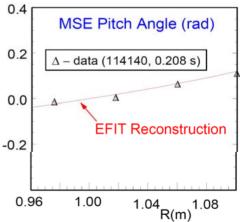
Assess high-k turbulence spectra and electron transport

FY05 (17 wks) FY06 (12 wks) FY07 (12 wks)

Macroscopic Stability Studies to Advance Physics of Pressure-Limiting Modes via Feedback & Strong Shaping

Motivation & NSTX Opportunities


- Priority Panel (T2): what limits maximum pressure that can be achieved in laboratory plasmas? Also to enhance ITER performance
- Improved shaping ($\kappa \le 2.7$, $\delta \le 0.9$) $\Rightarrow \beta_T \le 40\%$, $\beta_N \le 6$, $I_N \le 6.5$, low ℓ_i
- New ex-vessel control coils, SPA power, internal sensors, with feedback capabilities progressively phased-in
- Resolve mode dynamics via $\beta_0 \to 1$, $V_{\phi} \to V_{Sound} \to V_{Alfvén}$, $V_{\phi}' \to \gamma_{MHD}$


Milestones

- FY05: explore high-β plasmas via minimizing EF
- FY06: correlate resonant error field amplification, locked mode, β
- FY07: explore very high β regime close to wall-stabilized limit!
- Extensive analysis: EFIT-V_φ-isotherm-MSE, VALEN, MARS, M3D, ...

Additional Investigations

- Joint experiments on RWM & locked mode physics with Tokamaks
- Aspect ratio comparison on NTM physics with Tokamaks

2) Macroscopic Stability: Role of magnetic structure on plasma pressure & bootstrap current

Study rotating plasmas close to "wall-stability" with EF correction Characterize effectiveness of closed-loop EF/LM control

Characterize effectiveness of closed-loop RWM control

FY05 (17 wks) FY06 (12 wks) FY07 (12 wks)

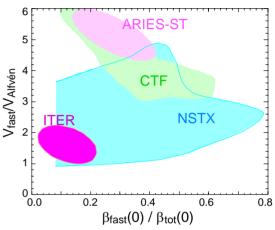
BPM, 3/15-16/05

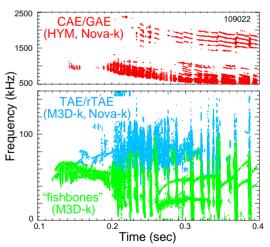
Wave-Particle Research Will Make Unique Contributions to Understanding Supra-Alfvénic Ion Driven Modes for ITER

Motivation & NSTX Opportunities

- ITER burning plasma will have supra-Alfvénic α's & beam ions
- NSTX covers the ITER regime in V_{fast}/V_A and β_{fast}/β_T ; and has measured range of *AE's driven by such ions of confined orbits

Milestones


BPM, 3/15-16/05


- FY05: measure *AE's & correlate with fast ion, J_{NB} changes
- Extensive core measurements: USXR tomography for mode structure; fast tang. interferometer for amplitude; MSE for J profile
- Extensive analysis: linear & non-linear simulations
- Future: understand fast ion transport due to *AE cascades
- FY06: understand edge coupling (parametric and RF sheath effects) and optimize HHFW scenario

Additional Investigations

- EBW: B-X-O emission @ 20-40 GHz, to understand potential of Ohkawa current drive & electron phase space science
- Accumulate physics database for future high power EBW

3) Wave-Particle Interaction: Use of electromagnetic waves to sustain and control high-temperature plasmas

Assess effects of supra-Alfvénic ion driven instabilities on core J_{NB}

Characterize & optimize

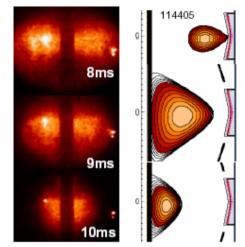
HHFW coupling

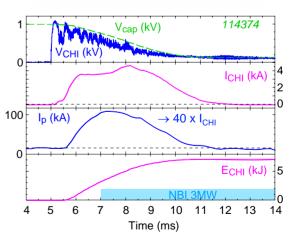
FY05 (17 wks) FY06 (12 wks) FY07 (12 wks) NSTX-Science-FY05-07

Solenoid-Free Start-up Tests Will Contribute to Understanding of Flux Generation and Reconnection

Motivation & NSTX Opportunities

- Priority Panel (T6); important to tokamak reactor attractiveness;
 required for compact ST such as CTF
- Low A → low internal magnetic flux and helicity
- Large progress: HIT-II (CHI to 200 kA); TST-2, LATE (ECH + VF to 0.1 I_{TF} ~ 10 kA); JT-60U (ECH + VF, to >100 kA for >100 ms);
 MAST (merging-compression, to 500 kA); NSTX (HHFW + field null, to 20 kA); Pegasus (e-beam, to 10 kA)


Milestones


BPM, 3/15-16/05

- FY06: test & understand conditions and scenarios for flux closure via CHI injector gas puff, 2-kV, low-I_D control
- FY07: clarify low-A physics for NBI & HHFW current ramp-up
- Extensive analysis: TSC, EFIT-J_{SOI}, LRDIAG, DINA

Additional investigations

- Extend HHFW initiation with ECH preionization
- Collaborate with MAST; proposal to JET (LH-initiation)

NSTX-Science-FY05-07

4) Start-up, Ramp-up and Sustainment: Physical processes of magnetic flux generation and reconnection

Assess CHI creation of closed magnetic flux

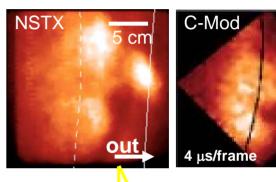
Test solenoid-free ramp-up

FY05 (17 wks) FY06 (12 wks) FY07 (12 wks)

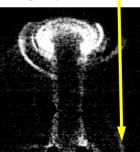
Boundary Physics Studies Aim to Understand Pedestal-SOL Science of Long-Pulse High-P/R Plasmas

Motivation & NSTX Opportunities

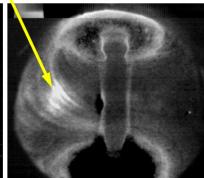
- Priority Panel (T10); enhance progress to predict H-mode pedestal with high confidence; ITPA priority
- − Low A: $B_p/B_T \sim 1$, large $B_{in}/B_{out} \& \rho^*$, P/R → 15 MW/m
- New tools: Li pellets/coating, supersonic gas jet, better TS


Milestones

- FY05: document detail of pedestal-SOL properties and dynamics
- Successful GPI adopted by several experiments
- "Blobs" linked to ELMs; "peeling" or shear Alfvén?
- FY07: document Li coating effects on recycling and core plasma; database for advanced particle control
- Extensive analysis: BOUT, ELITE, UEDGE, DEGAS2


Additional Investigations

 Pedestal similarity, small ELM comparison, "blob" characteristics comparison, with MAST, DIII-D, C-Mod


Gas Puff Imagnig (GPI)

Small ELM

Large ELM

NSTX-Science-FY05-07

5) Boundary Physics: Interface between fusion plasmas and normal temperature surroundings

Characterize pedestal and SOL of low-A, H-mode, high P/R plasmas

Characterize Li pellet & evaporator coating effectiveness

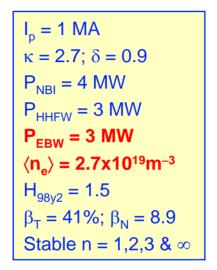
FY05 (17 wks) FY06 (12 wks) FY07 (12 wks)

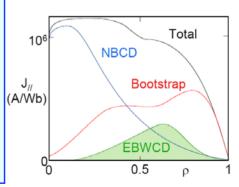
BPM, 3/15-16/05

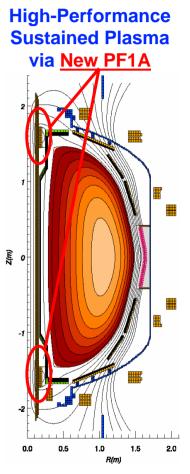
Integrated Scenario Studies Contribute to Understanding of Self-Organization and External Control

Motivation & NSTX Opportunities

- Priority Panel (T3): integrated understanding of self-organization & external control, enabling highpressure sustained plasmas; ITER "hybrid" mode
- High β & low A: clarify B/S vs. CD
- Clarify future EBW and particle control needs


Milestones


BPM, 3/15-16/05


- FY05: document and understand physics interplay of attractive, low-V_L, NBI plasmas
- FY06: benchmark simulation models & codes
- Identify needed "actuators" & model improvements
- Future: determine conditions for surface $V_L = 0$ long-pulse operation, though q_0 may evolve

Additional Investigations

 Contribute to mapping of ITER/NSTX hybrid scenario, accounting for *AE effects

NSTX-Science-FY05-07

6) Physics Integration: Synergistic effects of external control and self-organization

Characterize high-B/S & Bencl low-V_L plasmas for > $\tau_{\rm skin}$ scena

Benchmark time-dependent scenario simulation with data

FY05 (17 wks) FY06 (12 wks) FY07 (12 wks)

NSTX Participates Strongly in ITPA Topical Groups and is Committed to Important 2005 Joint Experiments

Topical Groups	ID#	Burning Plasma Issues	Participating Programs
Confinement Database &	CDB-2	β degradation in confinement scaling of ELMy H-modes	AUG, DIII-D, JET, JT-60U, MAST, NSTX, Tore-Supra
Modeling	CDB-6	Improving condition of global ELMy H-mode and pedestal database: low A	DIII-D, MAST, NSTX
Transport	TP-8.1	ITB similarity experiments	MAST, NSTX
Physics	TP-9	H-mode aspect ratio comparison	DIII-D, MAST, NSTX
Pedestal & Edge	PEP-9	Pedestal similarity experiments	DIII-D, MAST, NSTX
Physics	PEP-16	Small ELM regime comparison	C-Mod, MAST, NSTX
Divertor, SOL	DSOL-9	Carbon migration and deposition	AUG, DIII-D, JET, JT-60U, NSTX, TEXTOR
	DSOL-15	Comparison of edge "blob" characteristics	C-Mod, JT-60U, NSTX, TJ-II, Tore-Supra
MHD, Disruption Control	MDC-2	Resistive Wall Mode physics	AUG, DIII-D, JET, JT-60U, NSTX, TEXTOR
	MDC-4	Neoclassical Tearing Mode – A comparison	AUG, DIII-D, MAST, NSTX
	MDC-6	Error field physics comparison	C-Mod, DIII-D, JET, MAST NSTX, TEXTOR
	MDC-9	Fast-ion redistribution by *AE & cascade	AUG, DIII-D, JET, JT-60U, NSTX
Steady-State Op	SSO-2.1	Complete mapping of hybrid scenario	AUG, DIII-D, JET, JT-60U, NSTX

BPM, 3/15-16/05

Case-1 Impact Will Be Severe – National Research Team will Strive to Make Important Contributions

- FY06 milestones delayed to FY07 (12 run-weeks).
- Three code and tool benchmark milestones for FY06:
 - Compare EF/LM/RWM data with models of stability conditions.
 - Compare fast ion driven mode data with non-linear simulation.
 - Benchmark time-dependent scenario simulation with high-B/S, low-V_L data.
- Hold results review early in FY06; analyze data; present and publish FY05 results, expected to be extensive and important.
- Carry out ITER Physics Design Tasks using appropriate expertise.
- Enhance collaboration with MAST, DIII-D, C-Mod, etc. in critical topical areas, utilizing remote experimental participation.
- Install diagnostics and facility improvements (minimal non-labor funds) to prepare for early FY07 run.

Hold FY07 NSTX Research Forum in FY06.

BPM, 3/15-16/05

NSTX-Science-FY05-07

NSTX Case-3 Plan will Advance OFES Strategic Goals Effectively in Science, Burning Plasma, and Optimization

- Exciting NSTX science can be accelerated.
 - Combine EF & RWM active feedback control earlier; perform intensive tearing mode studies.
 - Measure fast-ion transport due to fast-ion driven modes.
 - Accelerate Li coating milestone; assess long-pulse heat & particle control requirements of low-A, H-mode, high P/R plasmas.
 - Characterize surface $V_I = 0$ plasmas for $> \tau_{skin}$.
 - Make decision on advanced particle control.
- Can enhance participation in ITPA on critical topics.
- Rapid progress in science will be made in a broad front.
- Begin high-power EBW preparation, a key to advancing performance of high-β, high-B/S, high-confinement plasmas.

BPM, 3/15-16/05 NSTX-Science-FY05-07

NSTX Will Advance Toroidal Plasma Science, Burning Plasma Physics, and Optimization

- Prepared three plans with progressive levels of research.
- Case-2 plan, assuming 12 run-weeks for FY06 and FY07, will
 - Emphasize high-k turbulence and electron transport;
 - Advance physics of pressure-limiting modes via feedback & very strong shaping;
 - Make unique contributions to understanding supra-Alfvénic ion driven mode;
 - Contribute to understanding of magnetic flux generation and reconnection;
 - Understand pedestal-SOL science of long-pulse high-performance plasmas.
- NSTX addresses key Priority Panel topics and participates strongly in ITPA 2005 Joint Experiments.
- Case-1 impact will be severe National Team will strive to make important contributions.
- Case-3 will advance OFES Strategic Plan Effectively.

Case-1 Plan (No Run in FY06, 12 Run-Weeks in FY07) Research Milestones

	F	Y05	FY06		ı	FY07	FY09
Exp. Run-	Neeks:	17	0*			12*	

1) Transport & Turbulence: Physical processes that govern heat, particle and momentum confinement

Characterize q' & ∇T_a effects on electron transport

(1) Measure high-k turbulence

2) Macroscopic Stability: Role of magnetic structure on plasma pressure and bootstrap current

Study rotating plasmas close to "wall-stability" with EF correction

- (1) Compare EF/RWM/LM data with theoretical models of stability conditions
- (1) Characterize effectiveness of closed-loop EF/LM control
- 3) Wave-Particle Interaction: Role of electromagnetic waves & modes in sustaining and controlling hot plasmas

Assess effects of supra-Alfvénic (1) Compare fast ion driven mode (1) Characterize & optimize

- ion driven instabilities on core J_{NB} data with non-linear simulation **HHFW** coupling
- 4) Start-up, Ramp-up and Sustainment: Physical processes of magnetic flux generation and reconnection

(1) Assess CHI creation of closed magnetic flux

5) Boundary Physics: Interface between fusion plasmas and normal temperature surroundings

Characterize pedestal and SOL of low-A, H-mode, high P/R plasmas

6) Physics Integration: Synergistic effects of external control and self-organization

Characterize high-B/S & low-V₁ plasmas for $> \tau_{skin}$

BPM, 3/15-16/05

(1) Benchmark time-dependent scenario simulation with high-B/S & low-V₁ data

Advanced Particle Control Decision Point

Case-2 Plan (12 Run-Weeks for FY06 & FY07) Research Milestones

	FY05		FY06	FY07	FY08		
Exp. Run-Weeks:		17	+12*	12	<u> </u>		
1) Transport	t & Turbulence: P	hysical process	ses that govern heat, particle and	momentum confinement	_		
Characterize q' & ∇T _e effects on electron transport		(2) Measure high-k turbulence	(2) Assess high-k turbulence spectra and electron transport				
2) Macrosco	pic Stability: Rol	e of magnetic s	tructure on plasma pressure and	bootstrap current	_		
Study rotating plasmas close to "wall-stability" with EF correction		(2) Characterize effectiveness of closed-loop EF/LM control	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
3) Wave-Par	ticle Interaction:	Role of electron	nagnetic waves & mdoes in susta	aining and controlling hot plasma	ıs		
As	sess effects of son driven instabilit	upra-Alfvénic	(2) Characterize & optimize HHFW coupling		_		
4) Start-up,	Ramp-up and Sus	stainment: Phys	ical processes of magnetic flux of	generation and reconnection			
			(2) Assess CHI creation of closed magnetic flux	(2) Test solenoid-free ramp-up			

5) Boundary Physics: Interface between fusion plasmas and normal temperature surroundings

Characterize pedestal and SOL of low-A, H-mode, high P/R plasmas

(2) Characterize Li pellet & evaporator coating effectiveness

6) Physics Integration: Synergistic effects of external control and self-organization

Characterize high-B/S & low-V_L plasmas for > τ_{skin}

*CASE-2

(2) Advanced Particle Control Decision Point

Case-3 Plan (17 Run-Weeks in FY06 and FY07) Research Milestones

	FY05		FY06		FY07			
Exp. Run-Weeks: 17			12 + <mark>5*</mark>		12 +	<mark>5*</mark>		
1) Transpo	ort & Turbulen	ce: Physical proces	ses that gove	ern heat, particle	e & m	nomentum confinement		
Characterize q' & ∇T _e effects		(2) Measure high-k turbulence		nce	` '			
	on electron tra	nsport				spectra and electron transport		
2) Macros	copic Stability:	: Role of magnetic s	tructure on p	olasma pressure	e & bo	ootstrap current		
	Study rotating	plasmas close	(3) Characte	rize effectivene	ess	(3) Characterize tearing		
t	o "wall-stabilit	y" with EF	of closed-lo	op EF <mark>/RWM</mark>		mode onset conditions &		
(correction		control			impact		
3) Wave-P	article Interact	ion: Use of electron	nagnetic wav	es to sustain ar	nd co	ntrol high-temperature pla	asmas	
		of beam-Alfvénic		rize & optimize		(3) Measure fast-ion trans		
i	ion driven instabilities on core J _{NB}			ling		due to fast-ion driven modes		
4) Start-up	o, Ramp-up and	d Sustainment: Phys	sical process	es of magnetic	flux	generation and reconnecti	<u>ion</u>	
-		-		CHI creation of		(2) Test solenoid-free ram		
			closed mag	netic flux				
5) Bounda	ry Physics: Int	terface between fusi	ion plasmas a	and normal tem	perat	ture surroundings		
	Characterize pe			rize Li pellet &		(3) Assess long-pulse hea	at &	
ā	and SOL of low	/-A, H-mode,	evaporator	coating		particle control requireme	ents of	
ŀ	nigh P/R plasm	nas	effectivenes	S		low-A, H-mode, high P/R	plasmas	
6) Physics	Integration: S	synergistic effects of	f external cor	ntrol and self-or	ganiz	<u>zation</u>		
	Characterize hi					(3) Characterize surface V	/ _L = 0	
	surface V _L plas	smas for > τ_{skin}				plasmas for $ > \tau_{skin} $		

*CASE-3

(3) Advanced Particle Control Decision Point