

NSTX Facility/Diagnostics/Budget Update and Plans for FY 06 - 08

College W&M Colorado Sch Mines Columbia U

Comp-X

General Atomics

INEL

Johns Hopkins U

LANL

LLNL

Lodestar

MIT

Nova Photonics

New York U

Old Dominion U

ORNL

PPPL

PSI

Princeton U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

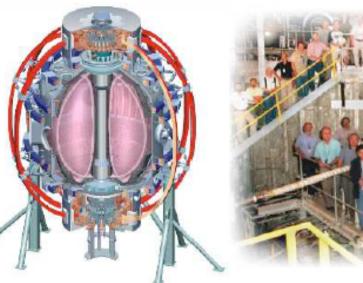
UCLA

UCSD

U Colorado

U Maryland

U Rochester


U Washington

U Wisconsin

Masayuki Ono

FY 2008 Budget Planning Meeting

March 14 - 15, 2006

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo **JAERI** Hebrew U Ioffe Inst RRC Kurchatov Inst TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep

NSTX Facility and Diagnostic Capabilities

Device Parameters

R = 85 cm

a = 65 cm

 $\kappa = 1.7 - 2.7$

 $\delta = 0.3 - 0.8$

 $B_{T} = 5.5 \text{ kG}$

 τ_{TE} (3.5 kG)~ 3 sec $\sim 6 \tau_{\rm skin}$

 $I_{\rm p} = 1.5 \, \text{MA}$

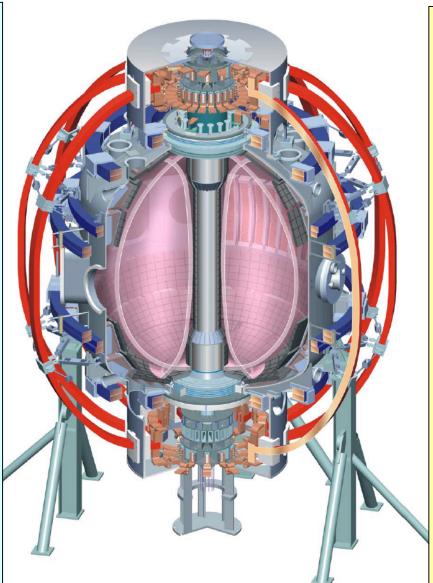
 $V_p = 14 \text{ m}^3$

 $E_p \sim 430 \text{ kJ}$

 $P_{NRI} = 7.4 \text{ MW}$

 $P_{HHEW} = 6 MW$

350°C bakeout


Passive Plates

EF/RWM Coils

 $I_{CHI} \sim 400 \text{ kA}$

60 cm dia. ports

Wide tang. access

In red - collaboration

Major Diagnostic Systems Confinement Studies

Magnetics for equilibrium reconstruction Diamagnetic flux measurement Multi-pulse Thomson scattering (30 ch)
CHERS: T_i(R) and V_o(r) (51 ch)
Neutal particle analyzer (2D scanning)
FIReTIP interferometer (119mm, 6 ch)
Density Interferometer (1 mm, 1ch) Visible bremsstrahlung radiometer (1 ch) Midplane tangential bolometer array X-ray crystal spectrometer: T_i(0), T_o(0) MSE-CIF (8ch)

MHD/Fluctuation/Waves

High-n and high-frequency Mirnov arrays Ultra-soft x-ray arrays – tomography (4) Fast X-ray tangential camera (2µs) Wave reflectometers FIReTIP polarimeter (6 ch. 600 kHz) Tangential microwave scattering Electron Bernstein wave radiometer Fast lost-ion probe (energy/pitch resolvina) Fast neutron measurement Locked-mode detectors RWM sensors (n = 1, 2, and 3)

Edge/divertor studies

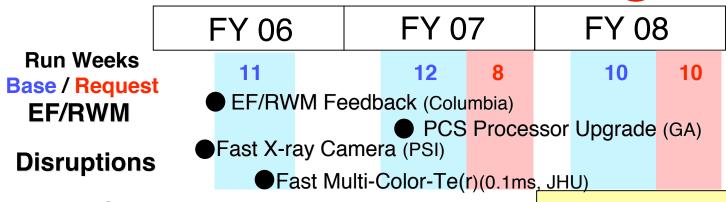
Reciprocating Langmuir probe Gas-puff Imaging (2usec) Fixed Langmuir probes (24) Edge Rotation Diagnostics (T_i, V_o, V_{pol}) 1-D CCD H_a cameras (divertor, midplane) 2-D divertor fast visible camera Divertor bolometer (4 ch) IR cameras (30Hz) (3) Tile temperature thermocouple array Scrape-off laver reflectometer Edge neutral pressure gauges

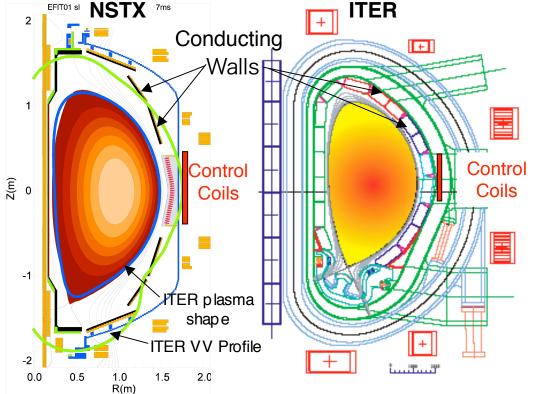
Plasma Monitoring

Fast visible cameras Visible survey spectrometer VUV survey spectrometer X-ray transmission grating spectrometer Fission chamber neutron measurement Visible filters copes Wall coupon analysis X-ray crystal spectrometer (astrophysics)

FY 05 Plasma Operations Completed Successfully

- o FY2005 Joule milestone: 17 run weeks
 - Achieved: 18 run weeks producing 2221 plasmas.
- o All facility and diagnostic milestones completed on or ahead of schedule.
- o Excellent safety record in 2005.
 - Maintaining our tradition and goal!
- o New Research Capabilities introduced in FY 05 yielded exciting results:
 - New PF 1A divertor coils for strong shape control κ ~ 2.7, δ ~ 0.8;
 - Error Field / Resistive Wall Mode (EF/RWM) coils powered by Switching Power Amplifier for plasma rotation and stability control;
 - 8 channel Motional Stark Effect (MSE) diagnostic for the first current profile measurement in high beta plasmas;
 - 30 ch MPTS for detailed profile particularly in the pedestal region;
 - 1.5 kV CHI capacitor bank and direct gas/ECH feed into injector for efficient current generation with closed flux surfaces;
 - Tangential high-k scattering system for electron transport study;
- o Toroidal field coil joints operated very reliably at 4.5 kG.

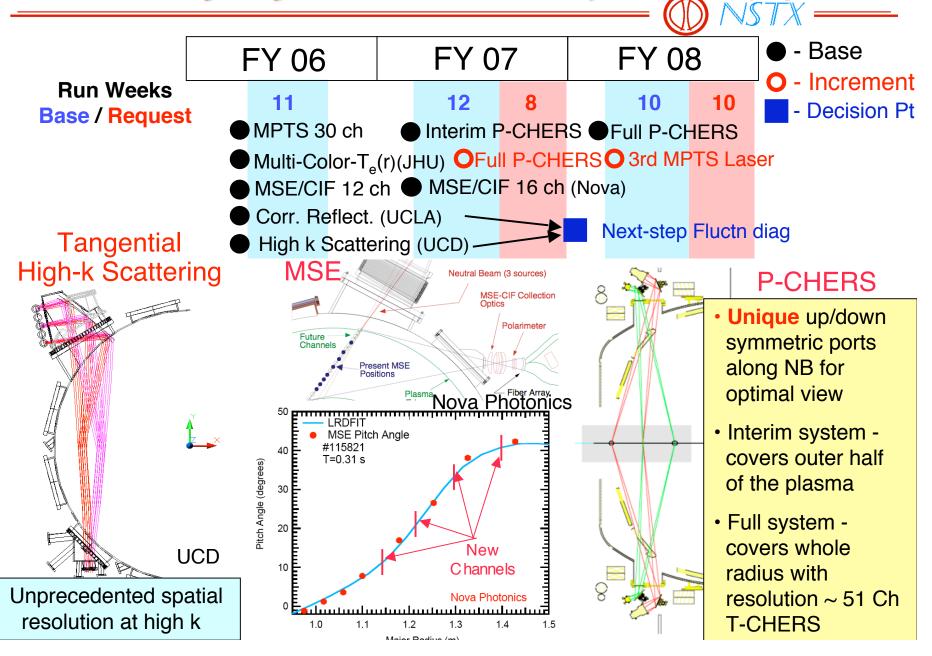

New Research Capabilities for FY 06 Run



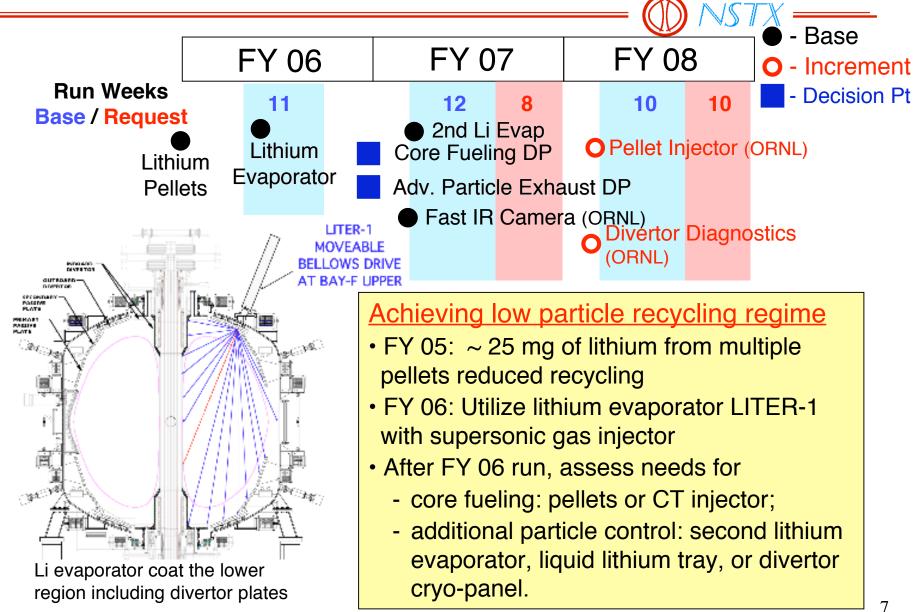
- o FY2006 Joule milestone: 11 run weeks
- o Plasma operations resumed in February 2006 and end in May.
- o New Research Capabilities for FY 06 experiments
 - Lithium Evaporator for improved particle recycling control for high performance long pulse discharges (March);
 - Feedback capability for EF/RWM coils powered by Switching Power
 Amplifier to improve and extend high performance plasmas (March);
 - 12 channels for MSE diagnostic to improve current profile determination, particularly in the outer region (March);
 - 2 kV operation of CHI capacitor bank to extend closed flux surface formation to higher current (April);
 - Dual remotely steerable, obliquely viewing radiometers for EBW emission covering extended frequency range 8 - 40 GHz (March);
 - TF qualified to 5.5 kG;
 - TF pulse length can be extended by ~20% if needed.

MHD

NSTX Well Positioned for Cutting Edge EF/RWM Research

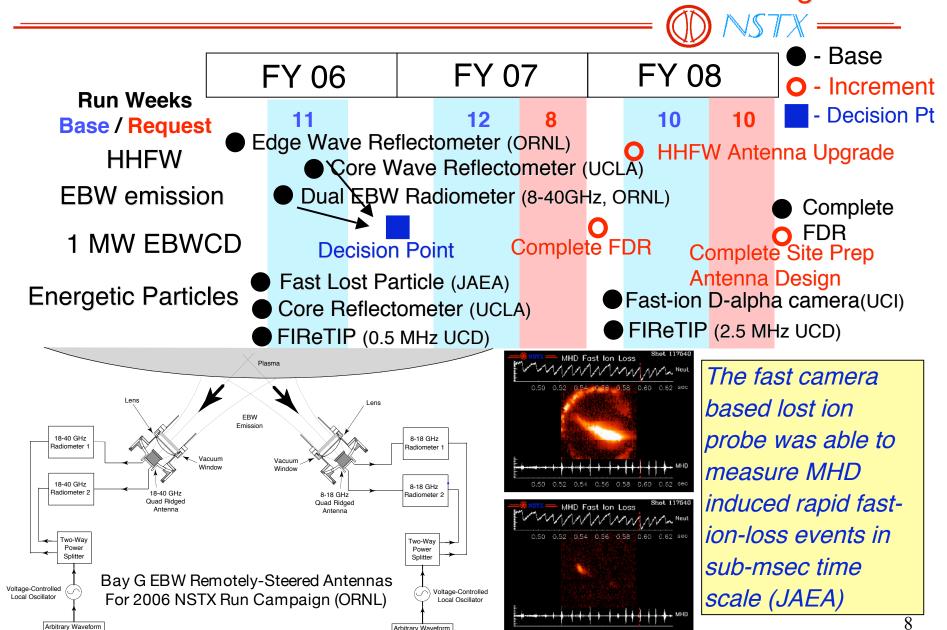


Capabilities and Plan


- EF/RWM coils powered by SPAs operated well in preprogrammed mode in FY 05
- Feedback control software written, compiled, and tested in simulation mode.
- Ready to test feedback control early in FY 06 run.
- PCS Processor Upgrade will provide faster feedback control x 3-10.

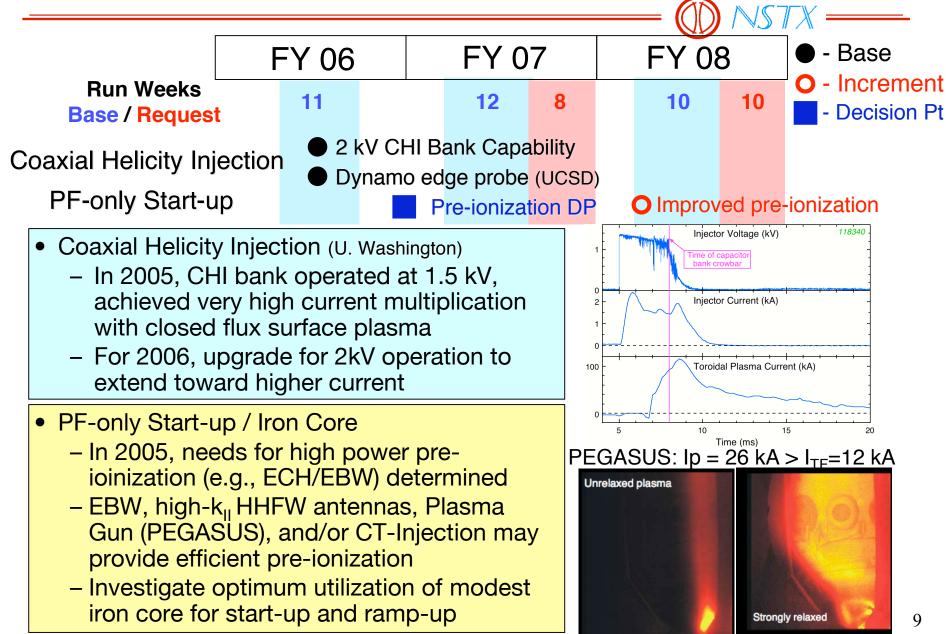
Transport and Turbulence

World leading diagnostics to address key transport physics



Boundary Extend high-performance discharges

Waves and Energetic Particles


Current and Pressure Profile Control for Advanced Regimes

Generator

Solenoid-Free Start-Up

Enables ST-CTF and Attractive Tokamak Reactors

NSTX Budget Summary (\$M)

	FY 06	FY 07		FY 08	
Budget level	Actual	Base	Incremental	Base	Incremental
Run Weeks	11	12	20	10	20
Facility Operation	17.7	18.2	1.0	18.4	1.4
Facility Upgrades	0.5	0.5	1.8	0.4	2.1
Facility Total	18.2	18.7	2.8	18.8	3.5
PPPL Research	9.7	9.8	0.2	9.9	0.5
Diag Upgrades	0.6	0.8	0.5	0.6	0.5
Coll. Diag. Interf	0.5	0.6	0.1	0.6	0.1
Collaborations	5.0	5.2	0.3	5.2	0.3
Science Total	15.8	16.4	1.1	16.3	1.4
NSTX Total	34.0	35.1	3.9	35.1	4.9

- 12 and 10 run week cases in FY 07 and 08 include minimal upgrades.
- Incremental budget allows drastic increase in facility utilization, implementation of the 1 MW EBW system and other high priority upgrades.

Requested Case will Greatly Enhance NSTX Science Output

- Significantly increase Facility Utilization:
 - 20 run weeks in FY 07 and FY08 (~ 100% increase from Base Case)
- Improve Facility/Diagnostic Capabilities:
 - Construction of 1MW EBW system (FY 07 09)
 - Core fueling (FY 08)
 - Outer PF start-up pre-ionization (FY 08)
 - Full P-CHERS (FY 07)
 - Critical Boundary Physics diagnostics (FY 08)
 - Third laser for MPTS to improve time resolution (FY 08)
- Improve Facility Reliability and Availability
 - Better Preventive Maintenance and
 - Critical spare parts

Consequences of 10% Budget Cut (FY08)

- Significant reduction in runtime (from 10 to 5 weeks)
- NSTX staff reduction of ~ 15 FTE relative to the base case
 - 12 further staff reduction if severance not funded additionally
- Non-labor reduction of ~ 20%
 - Diagnostic components, spare parts, energy, travel, etc.
 - Only corrective maintenance and replacement of failed components
- Significantly reduce facility and diagnostic upgrades procuremnet ~ 60%
 - Delay upgrade of p-CHERS diagnostic
- Similar impact on all collaborations
- Research slows by 50%

Facility, Diagnostic and Budget Summary

Very successful FY05 run:

- 18 run weeks with all milestones completed on or ahead of schedule
- Facility upgrades: New PF 1A coils; EF/RWM coils powered by 3 ch. SPA;
 1.5 kV CHI with improved ECH/gas; Movable GDC probe
- Diagnostic upgrades; High-k Scattering, 30 ch. MPTS, 8 ch. MSE-CIF, Edge
 Reflectometer, EBW Radiometer (18-40 GHz), Fast-sFLIP

Exciting FY06 run with new capabilities started:

- 11 run weeks started in February, end in May with June as contingency
- Facility upgrades: Lithium Evaporator; EF/RWM coil feedback; 2 kV CHI
- Diagnostic upgrades: 12 ch MSE-CIF; Dual remotely-steered radiometer
 (8 40 GHz) for EBW emission; Dynamo probe for CHI; 0.1ms Multi-color T_e(r)

Two cases presented for FY07 and FY08

- NSTX addresses issues important for ST as well as ITER through ITPA and USBPO
- Incremental Budget would allow NSTX to contribute significantly more to those important goals