• NSTX-U Research Plans

- 40 + 20 minutes - Jon Menard

NSTX-U Facility and Diagnostic Plans

- 40 + 20 minutes - Masa Ono

• PPPL Institutional Issues, Incremental Requests

- 20 + 10 minutes - Mike Zarnstorff

Supported by

NSTX-U Research Plans for FY2014-16

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics Old Dominion** ORNL PPPL **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

J. Menard, M. Ono - PPPL

For the NSTX-U Research Team

FY2016 FES Budget Planning Meeting Germantown, MD April 17, 2014

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev **loffe Inst** TRINITI Chonbuk Natl U **NFRI** KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep

Office of

Outline

- NSTX-U mission, priorities, FY14-16 overview
- FY14-16 research plans
- Milestone summary
- ITPA contributions
- ST-FNSF mission and configuration study
- Summary

NSTX Upgrade mission elements

• Advance ST as candidate for Fusion Nuclear Science Facility (FNSF)

• Develop solutions for the plasmamaterial interface challenge

- Explore unique ST parameter regimes to advance predictive capability - for ITER and beyond
- Develop ST as fusion energy system

FY14-16 planned research supports 5 highest priority goals of NSTX-U 5 year plan:

- Demonstrate 100% non-inductive sustainment at performance that extrapolates to ≥ 1MW/m² neutron wall loading in FNSF
- 2. Access reduced v^* and high- β combined with ability to vary q and rotation to dramatically extend ST physics understanding
- 3. Develop and understand **non-inductive start-up and ramp-up** (overdrive) to project to ST-FNSF with small/no solenoid
- 4. Develop and utilize high-flux-expansion "snowflake" divertor and radiative detachment for mitigating very high heat fluxes
- 5. Begin to assess high-Z PFCs + liquid lithium to develop highduty-factor integrated PMI solutions for next-steps

NSTX-U 5 year plan aims to develop ST physics and scenario understanding necessary for assessing ST viability as FNSF

	2015	2016	2017	2018	2019	2020
Max B _T [T], I _P [MA]	0.8, 1.6	1, 2				
Structural force and coil heating limit fractions	0.5, 0.5	1.0, 0.75		1.0, 1.0		
Nominal τ_{pulse} [s]	1 – 2	2 – 4		4 – 5		
Sustained β_N	3 – 5	4 – 6	NCC	5 – 6		
\mathbf{v}^{\star} / \mathbf{v}^{\star} (NSTX)	0.6	0.4	Cryo	0.3 – 0.2	0.2 – 0.1	
Non-inductive fraction ($\Delta t \ge \tau_{CR}$)	70 – 90%	80 – 110%		90 – 120%	100 – 140%	of FNSF
NBI+BS I _P ramp-up: initial → final [MA]		0.6 → 0.8	ECH /	0.5 → 0.9	0.4 → 1.0	aspect ratio
CHI closed-flux current [MA]	0.15 – 0.2	0.2 – 0.3	EBW	0.3 – 0.5	0.4 - 0.6	and diverto
P _{heat} [MW] with q _{peak} < 10MW/m ²	8	10		15	20	
Snowflake and radiative divertor exhaust location	Lower I	ower or Upp	oer Lo	Divertor h wer + Upper	heat-flux control	

Cryo: access lowest v*, compare to Li **ECH / EBW:** bridge T_e gap from start-up to ramp-up Off-midplane non-axisymmetric control coils (NCC): rotation profile control (NTV), sustain high β_N

10 year goal: integrate 100% non-inductive + high $\beta \& \tau_E$ with advanced divertor solution + high-Z solid / liquid metal walls

🔘 NSTX-U

NSTX-U Research Team Has Been Scientifically Productive Very Active in Scientific Conferences, Publications, and Collaborations

- Strong APS meeting (7 invited talks, 52 additional presentations) participation in the fall 2013. Three NSTX APS-DPP press releases available on the web.
- Significant collaboration research contributions are being made in diverse science areas by the NSTX-U research team.
- On-going active research collaboration particularly with DIII-D and EAST. Several activities resulted in IAEA synopses.
- All of the FY 2013 milestones were completed on schedule
- A good set of IAEA synopses (~ 30) submitted
- 61 refereed publications for CY 2013 with 4 PRLs
- Two NSTX researchers received APS Fellowship (Gates, Skinner)
- Ahmed Diallo received an Early Career Research Program Award

Overview of FY2014 NSTX-U research activities

- Collaborations supporting NSTX-U, ITER, FNSF
 - DIII-D: Snowflake/detachment control, pedestal, operations
 - C-Mod: Pedestal structure, high-Z PFC studies, RF
 - KSTAR: NTV physics, MHD stability, plasma control
 - York/MAST: Synthetic aperture μ-wave imaging (DBS, BXO)
 - EAST: Joint analysis of NSTX/EAST Li/boundary physics data
- Prepare for NSTX-U operation
 - Finish data analysis, publications from NSTX, collaborations
 - Transition off-site collaboration/researchers back to NSTX-U
 - Finalize physics design of long-term facility enhancements
 - Row of high-Z tiles on outboard divertor, divertor cryo-pump
 - ECH/EBW for start-up/ramp-up, off-midplane 3D coils
 - Prepare diagnostics, control system, analysis for NSTX-U ops

Partnering with PPPL theory to enhance NSTX-U modeling supporting high-priority research areas

(enabled by supplementary funding from FES for FY13 → FY14 covering 2.5-3FTE)

• Energetic particle research:

- Use the HYM code (fully kinetic ions and drift and kinetic electrons) to study CAE, GAE, KAW effects on energy fluxes and electron transport
- M3D-K nonlinear multi-mode TAE studies leading to avalanche production
- Extend TAE quasi-linear model to calculate fast-ion diffusion in NSTX-U

• Transport:

- Implement EM effects in GTS (for core) and XGC-1 (for edge) to enable studies of micro-tearing in NSTX/NSTX-U
- Comparative study of role of collisionality in transport in NSTX and DIII-D

• Stability:

- VDE and beta-limit disruptions using M3D/M3D-C1
- Use stellarator tools for 3D equilibrium and coil optimization for proposed NSTX-U off-midplane non-axisymmetric control coils (NCC)

Overview of FY2015-16 NSTX-U research activities

- Resume operation, explore new regimes:
 - High β + lower v^* , higher non-inductive w/ higher B_T, I_P, 2nd NBI
- FY2015
 - Complete CD-4 for NSTX Upgrade Project near end of CY14
 - Obtain first data at 60% higher field/current, 2-3× longer pulse:
 - Re-establish sustained low I_i / high- κ operation above no-wall limit
 - Study thermal confinement, pedestal structure, SOL widths
 - Assess current-drive, fast-ion instabilities from new 2nd NBI
- FY2016
 - Extend NSTX-U performance to full field, current (1T, 2MA)
 - Assess divertor heat flux mitigation, confinement at full parameters
 - Access full non-inductive, test small current over-drive

FY14-16 planned research supports 5 highest priority goals of NSTX-U 5 year plan:

- 1. Demonstrate 100% non-inductive sustainment at performance that extrapolates to \geq 1MW/m² neutron wall loading in FNSF
- 2. Access reduced v^* and high- β combined with ability to vary q and rotation to dramatically extend ST physics understanding
- 3. Develop and understand non-inductive start-up and ramp-up (overdrive) to project to ST-FNSF with small/no solenoid
- 4. Develop and utilize high-flux-expansion "snowflake" divertor and radiative detachment for mitigating very high heat fluxes
- 5. Begin to assess high-Z PFCs + liquid lithium to develop highduty-factor integrated PMI solutions for next-steps

NSTX-U is developing a range of profile control actuators for detailed physics studies, scenario optimization for FNSF

Rotation Profile Actuators

q-Profile Actuators

🔘 NSTX-U

Rotation profile control will be an important tool for accessing and sustaining high β

(D) NSTX-U

n=1 MHD spectroscopy: high β_N can be more
 stable → important for advanced scenarios

- For these plasmas, high β_N was correlated with rotation that maximizes RWM damping
 - Largest stabilizing effect for RWM from ion precession drift resonance:

$$\delta W_k \sim \frac{1}{\langle \omega_D \rangle + \omega_E - i v_{eff}} \rightarrow \text{Minimize} |<\omega_D > + \omega_E|$$

 5YP: Off-midplane 3D coils enable control of resonant vs. non-resonant torques, v_b profile

Model-based, state-space rotation controller being designed to use Neoclassical Toroidal Viscosity (NTV) as actuator

□ Momentum force balance – ω_{ϕ} decomposed into Bessel function states

$$\sum_{i} n_{i} m_{i} \left\langle R^{2} \right\rangle \frac{\partial \omega}{\partial t} = \left(\frac{\partial V}{\partial \rho} \right)^{-1} \frac{\partial}{\partial \rho} \left[\frac{\partial V}{\partial \rho} \sum_{i} n_{i} m_{i} \chi_{\phi} \left\langle \left(R \nabla \rho \right)^{2} \right\rangle \frac{\partial \omega}{\partial \rho} \right] + T_{NBI} + T_{NTV}$$

NTV torque:

$$T_{NTV} \propto K \times f\left(n_{e,i}^{K1} T_{e,i}^{K2}\right) g\left(\delta B(\rho)\right) \left[I_{coil}^{2} \omega\right] \quad (\text{non-linear})$$

Advanced Scenarios and Control Research Plans for FY2014-16: Implement advanced controls, explore high non-inductive & I_P scenarios

- FY14: Develop and implement advanced control algorithms in preparation for NSTX-U operation R14-3
 - Snowflake control on DIII-D (PPPL+LLNL+GA)
 - J profile control using on/off-axis 2nd NBI
 - ORISE post-doc: J profile control algorithms w/ TRANSP as plasma simulator
 - Implement rt-MSE (Nova Photonics) in rt-EFIT for q-profile reconstruction
 - Rotation control: 2nd NBI deposition flexibility + 3D fields/NTV
- FY14: DIII-D/National Campaign: test 100% NI at lower B_T
- FY14-15: Re-establish NSTX-U control and plasma scenarios
- FY15: Assess new 2nd NBI current-drive vs. R_{TAN}, n_e, outer gap
 Push toward 100% non-inductive at higher B_T, P_{NBI}
 R15-3 JRT-2015
- FY15: Explore scenarios (τ_E , I_i, MHD) at up to 60% higher I_P, B_T
- FY16: Explore scenarios at full I_P and B_T capability of NSTX-U
 - Goal: Access 100% non-inductive, test small I_P overdrive

R16-3

Macroscopic Stability Research Plans for FY2014-16:

Complete 3D coil physics design, re-establish high- β ops, test MGI

- FY14: JRT analysis for plasma response to 3D fields (J-K Park)

 Also, complete physics design of new Non-axisymmetric Control Coils (NCC) for mode, error field, and v₀ control
 JRT-2014
- FY14: Understand/model low-density/ramp-up disruptions in NSTX in prep for low v* operation in NSTX-U scenarios R14-1
 Hybrid ∇Ω_φ + ∇p-driven kink/TM is a leading candidate for early MHD
- FY15: Re-establish n=1-3 error-field correction, RWM control, minimize EF rotation damping, sustain operation above no-wall limit R15-3
- FY15: Test poloidal dependence of Massive Gas Injection (outboard vs. private flux region)
- FY16: Contribute unique MGI data (low-A, injector location) for mitigation + warning, prediction [JRT-2016
 - Assess mitigation triggering via real-time warning in NSTX-U

FY14-16 planned research supports 5 highest priority goals of NSTX-U 5 year plan:

- Demonstrate 100% non-inductive sustainment at performance that extrapolates to ≥ 1MW/m² neutron wall loading in FNSF
- 2. Access reduced v^* and high- β combined with ability to vary q and rotation to dramatically extend ST physics understanding
- 3. Develop and understand non-inductive start-up and ramp-up (overdrive) to project to ST-FNSF with small/no solenoid
- 4. Develop and utilize high-flux-expansion "snowflake" divertor and radiative detachment for mitigating very high heat fluxes
- 5. Begin to assess high-Z PFCs + liquid lithium to develop highduty-factor integrated PMI solutions for next-steps

Testing predictability of T_e profiles using reduced χ_e models in regimes where single micro-instability is dominant

- Linear gyrokinetic simulations find microtearing unstable in mid-radius region of high-collisionality H-modes
 - Other micro-instabilities subdominant at this location for this class of discharge

- Reduced model for microtearing χ_e (Rebut-Lallia-Watkins (RLW) 1988) shows reasonable agreement between predicted & measured T_e for r/a > 0.3
 - χ_e much larger than RLW must be used in core to match central T_e due to GAE/CAE?

S. Kaye

CAEs show coupling to kinetic Alfvén Wave (KAW) near mid-radius \rightarrow may be related to high effective core χ_e (?)

Radial profiles of Alfvén continuum and δE_{\parallel} for n=8. Radial width of KAW is comparable to beam ion Larmor radius

Poloidal contour plots of δE_{\parallel} , solid line is contour of $\omega_A(Z,R)=$ ω_{CAE} , where $\omega_A(Z,R)=V_A n/R$.

E. Belova – HYM code (Theory/NSTX-U partnership)

 KAW can have strong effect on electron transport due to finite δE_{||} → may transfer energy from NBI fast-ions in core to thermal electrons near half-radius <u>Transport and Turbulence Research Plans for FY2014-16:</u> Develop reduced χ_e models, first τ_E data at higher B_T, I_P + turbulence

- FY14-16: Develop model $\chi_{e, AE}$ using measured CAE/GAE mode structures and HYM/ORBIT simulations (w/ EP group)
- FY14-16: Develop and validate reduced transport models using ST data + linear and non-linear gyro-kinetic simulations
- FY15: Extend ST confinement scalings and understanding with up to 60% increase in B_T and I_P R15-1
 Measure low-k δn (BES w/ increased edge channel count), 1st polarimetry data
- FY16: Extend confinement studies to full B_T , $I_P \rightarrow 2-3 \times \text{lower } v^*$
- FY16: Initial utilization of new high-k FIR scattering system for ETG turbulence
 Measure k_r & k_e to study turbulence anisotropy
- FY16 (incremental): Study turbulence vs. v*,
 rotation, q with high-k + BES + polarimetry Image

FY13-14: Assessed parametric dependence of TAE avalanches and energetic particle modes (EPMs) in NSTX

Identified regimes w/ small fast-ion loss: important for NSTX-U, FNSF, ITER

- Modes lead to neutron rate decrements up to 30%
- TAE avalanches only occur for $\beta_{fast} > 0.3 \beta_{total}$
- Conversely, quiescent plasmas were only seen where $\beta_{fast} < 0.3 \beta_{total}$
- Two types of EPM:
 - Higher q_{min}~2-3 (earlier in shot), more continuous → long-lasting mode (LLM)
 - Lower q_{min} → 1 (later in shot), more bursty and fishbone-like, n=1-3

Energetic Particle Physics Research Plans for FY2013-15: Develop full + reduced fast-ion transport models, characterize new 2nd NBI

- FY14: Collaborate with DIII-D/National Campaign studying AE thresholds & fast-ion transport vs. q_{min} and on/off-axis NBI
- FY14: Finalize design/implementation of prototype AE antenna and of upgraded ssNPA diagnostic
- FY14-15: Develop reduced model for AE-induced fast ion losses – needed for NBICD in STs/ATs/ITER R14-2
- FY14-15: Contribute to development of reduced model of electron thermal transport from CAE/GAE
- FY15-16: Measure fast-ion (FI) density profiles, confinement, current drive, AE stability
 - Exploit new 2nd NBI and higher B_T , access to reduced v_{fast} / v_A R15-2

FY14-16 planned research supports 5 highest priority goals of NSTX-U 5 year plan:

- 1. Demonstrate 100% non-inductive sustainment at performance that extrapolates to \geq 1MW/m² neutron wall loading in FNSF
- 2. Access reduced v^* and high- β combined with ability to vary q and rotation to dramatically extend ST physics understanding
- 3. Develop and understand non-inductive start-up and ramp-up (overdrive) to project to ST-FNSF with small/no solenoid
- 4. Develop and utilize high-flux-expansion "snowflake" divertor and radiative detachment for mitigating very high heat fluxes
- 5. Begin to assess high-Z PFCs + liquid lithium to develop highduty-factor integrated PMI solutions for next-steps

Plasma initiation with small or no transformer is unique challenge for ST-based Fusion Nuclear Science Facility

NSTX-U Non-Inductive Strategy:

- NSTX-U 5 year plan goal:
 - Generate ~0.4MA closed-flux start-up current with helicity injection
 - Heat CHI with ECH and/or fast wave, ramp 0.4MA to 0.8-1MA with NBI

Simulations support non-inductive start-up/ramp-up strategy

• TSC code successfully simulates CHI $I_{\rm P}$ ~200kA achieved in NSTX

FY14: Implemented NSTX-U geometry in TSC Ploidal Flux Time Zero = 5 ms, T = 5 ms T = 7.6 ms T = 11.5 ms T = 15 ms T = 15 ms T = 15 ms T = 15 ms T = 10 m T =

- TSC + tools included in 5 year plan support CHI I_P → 400kA in NSTX-U
 - 2.5 x higher injector flux (scales with I_P)
 - Higher $B_T = 1T$ (increases current multiplication)
 - > 2kV CHI voltage (increases flux injection)
 - 1MW 28GHz ECH (increases T_e)

R. Raman (U-Wash)

- TRANSP: NSTX-U more tangential NBI → 3-4x higher CD at low I_P (0.4MA)
 - 1.5-2x higher CD efficiency, 2x higher absorption
- TSC/TRANSP: NI ramp-up from
 0.2MA→0.6MA w/ BS + (only) 2nd NBI

 Requires early RF (ECH and/or FW) heating to enable NBI coupling

NIMROD 3D-resistive MHD: CHI simulations with magnetic diffusivities similar to experiment produce flux closure

 Closed flux fraction increases as the magnetic diffusivity is reduced (but is lower than in experiment, investigating...)

e-heating increases closed-flux I_P

F. Ebrahimi (PU), R. Raman (U-Wash)

🔘 NSTX-U

Solenoid-Free Start-up and Ramp-up Research Plans for FY2014-16: Prepare CHI for NSTX-U, assess CHI/NBI start-up/ramp-up

- FY14: Complete design of upgraded capacitor bank and diagnostics for NSTX-U, implement CHI gap tiles
 - Also finish CHI design study for QUEST, possibly implement CHI
- FY14: DIII-D/National Campaign: test small current overdrive using NBI+BS
- FY15: Establish NSTX-U CHI, assess impact of new injector, gap, higher B_T
- FY15-16: Initial tests of small NBI+BS overdrive ramp-up using new 2nd NBI and higher B_T

R16-3

Wave Physics Research Plans for FY2014-16:

Finalize ECH/EBW design, simulate & develop reliable FW H-mode

- FY14-15: Guide 1MW/28GHz ECH/EBW engineering design

 ECH to heat CHI, form target for HHFW/NBI
 EBW H&CD for start-up, sustainment
- FY16: Assess fast-wave SOL losses and core thermal and fast ion interactions at increased B_T, I_P R¹⁶⁻²

FY14-16 planned research supports 5 highest priority goals of NSTX-U 5 year plan:

- 1. Demonstrate 100% non-inductive sustainment at performance that extrapolates to \geq 1MW/m² neutron wall loading in FNSF
- 2. Access reduced v^* and high- β combined with ability to vary q and rotation to dramatically extend ST physics understanding
- 3. Develop and understand non-inductive start-up and ramp-up (overdrive) to project to ST-FNSF with small/no solenoid
- 4. Develop and utilize high-flux-expansion "snowflake" divertor and radiative detachment for mitigating very high heat fluxes
- 5. Begin to assess high-Z PFCs + liquid lithium to develop highduty-factor integrated PMI solutions for next-steps

Snowflake divertor results + simulations project to favorable particle and power exhaust control in NSTX-U, next-steps

 Snowflake on DIII-D (GA+LLNL+PPPL collaboration) extended 2-3x reduction in q_{peak} to 3s duration

- Compatible with cryo-pumping ($n_e/n_G = 0.4-0.75$)
- NSTX-U divertor cryo projections: $f_G \le 0.5$ for wide range of $I_P (\lambda_{SOL})$
 - Standard/snowflake: 0.6/0.7 to 1.5/2MA
 - Maintain $q_{peak} \le 10$ MW/m²
- Multi-fluid edge transport model (UEDGE) predicts factor of ~5
 reduction in NSTX-U peak heat flux

– Geometry + impurity radiation (4% C)

Boundary Physics Research Plans for FY2014-16:

Advance snowflake, cryo, pedestal, SOL studies, extend to higher B_T, I_P

- FY14: Complete divertor cryo physics design
- FY14: Pedestal/SOL collaborations
 - C-Mod: Measured field-aligned electromagnetic mode that clamps pedestal \nabla T_e - consistent with kinetic ballooning mode (KBM) and EPED/ELITE models
 - Ahmed Diallo, et al., PRL 2014
 - NSTX-U/DIII-D: Continue analysis of enhanced pedestal (EPH) and very high confinement (VH) H-modes
 - Both obtain $H_{98y,2} >> 1$, apparently from increased E×B shear
- FY15: Measure pedestal structure, SOL width, ELM types, snowflake performance at up to 60% higher I_P, B_T, 2× higher P_{NBI} R15-1, IR15-1
- FY16: $I_P \rightarrow 2MA \rightarrow test snowflake, detachment, PFCs with q_{||} up to 4-5× higher than NSTX R¹⁶⁻¹$

0.8

(a) Magnetic fluctuations spectrogram

ntegrated spectral power [200

1.12

 λ_{a} [mm] (exp.)

 $R^2=0$

1.13

B_{pol,MP} [T]

Time [s]

 $\overline{n_e}$ [10²⁰ m⁻³]

1.14

MAS

C-Moc

■ AUG ▲ DIII-D

Collaboration with Magnum-PSI finds Li coatings on high-Z PFCs may have lower evaporation rates than expected

- Theory (Langmuir law evaporation + TRIM sputtering) predicts rapidly increasing yield for T_{surface} > 350°C
- Experiment shows increase in evaporation threshold T_{surface} and/or significantly lower erosion
- 3 erosion regimes observed for D⁺ incident on Li-coated TZM Mo:
 - -High-yield: lasts 1-2s ($\Phi_{D+} / \rho_{Li} \le 250$)
 - -Intermediate: \lesssim 30s (Φ_{D+} / $\rho_{Li} \leq$ 4300)
 - Low-yield regime: Li depleted from center of sample

M. Jaworski, T. Abrams (PU grad student)

 Φ = fluence, ρ = areal density (atoms/m²)

 $\mathbf{Y}_{\text{theory}} = \mathbf{Y}_{\text{TRIM}} + \mathbf{\Gamma}_{\text{evap}} / \mathbf{\Gamma}_{\text{D+}}$

Suggests possible Li + (D/Mo) interactions may suppress erosion

Materials and Plasma Facing Components Plans for FY2014-16:

Advance Li understanding/technology, support NSTX-U wall conditioning

NSTX-U is key part of PPPL liquid-metal PFC development program

- FY14: Develop Li-coating tools for upper PFCs of NSTX-U to increase Li coverage of C, D pumping, thermal confinement
- FY14-15: Lab-based R&D for advanced Li PFCs
 - Study Li on metal substrates, response to plasma power and particle fluxes (MAGNUM-PSI)
 - High-heat-flux high-Z PFC design (TZM or W lamellae)
 - Flowing Li loop tests
 - Develop capillary-restrained gas-cooled Li PFC

- FY14: EAST: assess particle/impurity control w/ triggered ELMs, cryo-pumping, lithiumization, high-Z PFCs
- FY15: Test lithium granule injector (LGI) for ELM triggering and impurity control, Li coating performance in NSTX-U
- FY16: Begin to assess high-Z (+Li coated) PFC performance with 1 row of W or TZM tiles on outboard divertor (at large R)

Outline

- NSTX-U mission, priorities, FY14-16 overview
- FY14-16 research plans
- Milestone summary
- ITPA contributions
- ST-FNSF mission and configuration study
- Summary

Administration FY2015 request-level provides run-time and field + current to exploit most new Upgrade capabilities

Incremental (full ops) accelerates snowflake divertor and

transport research, fully utilizes facility during next 2 years

Outline

- NSTX-U mission, priorities, FY14-16 overview
- FY14-16 research plans
- Milestone summary
- ITPA contributions
- ST-FNSF mission and configuration study
- Summary

Supporting ITER through ITPA participation

- Representatives in every Task Group, leadership in several:
 - R. Maingi: chair of Pedestal and Edge Physics TG
 - S. Sabbagh: Leads WG on RWM code benchmarking, RWM stability & control
- Active in 25 JEX/JACs with many contributors from NSTX-U

	Pedestal, Scrape-	Off Layer	, Divertor	
PEP-26	Critical edge parameters for achieving L-H transitions	PEP-36	ELM energy losses and their dimensionless scaling in the context of operational parameters	Maingi (chair), J
PEP-27	Pedestal profile evolution following L-H/H-L transitions	DSOL-24	Disruption heat loads	Canik, Chang, I
PEP-29	Vertical jolts/kicks for ELM triggering and control	DSOL-28	Narrow heat flux widths and divertor power dissipation	Goldston, Jawo
	Energetic	Particle	S	
EP-2	Fast ion losses and redistribution from localized AEs	EP-6	Fast ion losses and associated heat loads from edge perturbations (ELMs and RMPs)	Fredrickson, Fu
EP-4	Effect of dynamical friction (drag) at resonance on non-linear AE evolution			Kramer, Podes
	Integrated Oper	rating Sco	enarios	
IOS-3.2	Define access conditions to get to a steady-state scenario	IOS-4.3	Collisionality of confinement in advanced inductive plasmas	Gerhardt. Kess
IOS-4.1	Access conditions for advanced inductive scenarios with ITER-relevant conditions	IOS-5.2	Maintaining ICRH coupling in expected ITER regime	Poli, Gates
	Macroscopic Sta	bility and	I Control	
MDC-2	Joint experiments on resistive wall mode physics	MDC-17	Active disruption avoidance	Sabbagh, Berke
MDC-14	Rotation effects on neoclassical tearing modes	MDC-18	Evaluation of axisymmetric control aspects	Jardin, Park, Za
MDC-15	Disruption database development	MDC-21	Global mode stabilization physics and control	Gerhardt, Mena
	Transport an	d Turbul	ence	
TC-9	Scaling of intrinsic plasma rotation with no external momentum input	TC-15	Dependence of momentum and particle pinch on collisionality	Kave (previous
TC-10	Experimental identification of ITG, TEM and ETG turbulence and comparison with codes	TC-17	ρ^{\star} scaling of intrinsic torque	Ren, Guttenfeld
TC-12	H-mode transport at low aspect ratio	TC-24	Impact of resonant magnetic perturbations on transport and confinement	wcree/smith

Ahn. Diallo, orski

idbrink, á

el,

ery, kharov, rd

chair). ler,

NSTX/ST researchers contributing to LDRD-funded study of Mission and Configuration of an ST-FNSF

- Overarching goal of study: - Determine optimal mission, performance, size
- Goals of study:

UT Austin ORNL Culham Russia

regions

- PPPL
- Review existing designs, ID advantageous features, improve configuration
- Develop self-consistent assessment + configuration for use by community
- Assess T self-sufficiency, maintainability, flexibility
- FY2013-14 results/progress:
 - Tritium breeding ratio (TBR) ~ 1 likely requires breeding blanket near top+bottom of centerstack (CS) **Blanket**
 - Identified coil configuration compatible with:
 - Breeding in CS end region + vertical maintenance
 - Ex-vessel PF coils on outboard, can be S/C, support range of I_i and β_N
 - Divertor power exhaust: q_{beak} ~ 3-5MW/m², partially detached
 - Now carrying out free-boundary TRANSP simulations for NNBI+BS current drive, fusion performance, neutronics

Summary: NSTX-U FY2014-16 research plan strongly supports FES vision elements

• Burning Plasma Science / ITER research

- Leading contributions to non-linear AE* dynamics, fast-ion transport, disruption warning, response to 3D δ B, RWM control

Control science, plasma-wall interactions, FNSF

- Prepare NSTX-U to extend high- β + high-non-inductive scenarios to full non-inductive operation with advanced control
- Provide critical data on SOL-widths and turbulence, novel snowflake divertors, Li-based PFCs – all for high power density
- NSTX + Upgrade will provide critical confinement, stability, and sustainment data for assessing ST as potential FNSF

Validated predictive capability, discovery science

- Will access new & unique high- β + low- ν^* regime, exploit wide variation of rotation, q, fast-ion drive to test leading models

Incremental funding needed to fully utilize NSTX-U facility and to design + implement 5YP facility enhancements

Supported by

NSTX-U Facility and Diagnostics Plans for FY2014-16

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

Masa Ono, Jon Menard, Ron Strykowsky

for the NSTX-U Team

FWP 2016 Budget Planning Meeting April 17, 2014

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U Tsukuba U **U** Tokyo JAEA Inst for Nucl Res, Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

Talk Outline

- NSTX Upgrade Project Update
- NSTX-U Commissioning and Operation Plan
- FY2014-16 Facility-Diagnostic Plan
- Budget
- Summary

NSTX Upgrade Project Progress Overview

R. Strykowsky, E. Perry, T. Stevenson, L. Dudek, S. Langish, T. Egebo, M. Williams and the NSTXU Team

Center stack

Structure

Ancillary Sys

New Center Stack Project Scope

- ✓ TF Flex bus
- OH coil
- Inner PF coils
- ✓ Enhance outer TF supports
 ✓ Enhance PF supports
- Enhance PF supports
 Reinforce umbrella structure
- New umbrella lids
- Power systems
- I&C, Services, Coil protection
 Umbrella Structure

2nd NBI Project Scope

- ✓ Decontaminate TFTR beamline
- ✓ Refurbish for reuse
- Relocate pump duct, 22 racks and numerous diagnostics to make room in the NSTX Test Cell
- Install new port on vacuum vessel to accommodate NB2
- Move NB2 to the NSTX Test Cell
- Install power, water, cryo and controls

Substantial Increase in NSTX-U Device / Plasma Performance To provide data base to support ST-FNSF designs and ITER operations

M. Ono NSTX-U FWP 2016 Budget Planning Meeting

OH Coil Winding Nearly Complete Completed 3rd of 4 Layers

∭NSTX-U

M. Ono NSTX-U FWP 2016 Budget Planning Meeting

NSTX-U Test Cell Aerial View (March, 2014) 2nd NBI and Structural Enhancement Nearly Complete

Final 2nd NBI Component being Installed

2nd NBI duct with pumping section and NBI armor installed

Source installation planned for June

Upgrade Project 84% complete with 30% contingency on work remaining

Centerstack is on the Critical Path

- Components & Hardware
- Inner TF Bundle
- OH Solenoid
 - OH solenoid winding- *forecast completion April*
 - VPI OH May 2014
- Centerstack Assembly-
 - Delivery to NSTX TC July2014
- Install Centerstack August 2014
- Readiness review September 2014
- Pumpdown October 2014
- ISTP November 2014
- CD-4 *December 2014*

🔘 NSTX-U

NSTX-U Digital Coil Protection System DCPS provides real time coil protection via real time computation

Phase 1 testing of the DCPS software is being performed.

NSTX-U diagnostics to be installed during first 2 years

Diagnostics presently being installed prior to the center-stack installation

MHD/Magnetics/Reconstruction

Magnetics for equilibrium reconstruction Halo current detectors High-n and high-frequency Mirnov arrays Locked-mode detectors **RWM** sensors

Profile Diagnostics

MPTS (42 ch, 60 Hz) T-CHERS: $T_i(R)$, $V_{\phi}(r)$, $n_C(R)$, $n_{Li}(R)$, (51 ch) P-CHERS: $V_{\rho}(r)$ (7¹ ch) MSE-CIF (18 ch) MSE-LIF (20 ch) ME-SXR (40 ch) Midplane tangential bolometer array (16 ch)

Turbulence/Modes Diagnostics

Poloidal Microwave high-k scattering Beam Emission Spectroscopy (48 ch) Microwave Reflectometer, Microwave Polarimeter

Ultra-soft x-ray arrays – multi-color

Energetic Particle Diagnostics

Fast Ion D_{α} profile measurement (perp + tang) Solid-State neutral particle analyzer Fast lost-ion probe (energy/pitch angle resolving) Neutron measurements New capability, Enhanced capability

Edge Divertor Physics

Gas-puff Imaging (500kHz) Langmuir probe array Edge Rotation Diagnostics (T_i , V_{ϕ} , V_{pol}) 1-D CCD H_{α} cameras (divertor, midplane) 2-D divertor fast visible camera Metal foil divertor bolometer **AXUV-based Divertor Bolometer** IR cameras (30Hz) (3) Fast IR camera (two color) Tile temperature thermocouple array Divertor fast eroding thermocouple Dust detector Edge Deposition Monitors Scrape-off layer reflectometer Edge neutral pressure gauges Material Analysis and Particle Probe **Divertor VUV Spectrometer**

Plasma Monitoring

FIReTIP interferometer Fast visible cameras Visible bremsstrahlung radiometer Visible and UV survey spectrometers VUV transmission grating spectrometer Visible filterscopes (hydrogen & impurity lines) Wall coupon analysis

Transition from Construction to Operation NSTX-U Start-up Process Similar to NSTX

NSTX-U ISTP, Commissioning, and Startup will follow a similar process as NSTX initial commissioning and startup from February 1999.

Schedule will Provide Exciting Research Operation in FY15

How to get ready for a productive research operation is a key

- CD-4 in early December should allow scheduling of the research campaign up to 20 run weeks (Base 18 run weeks and Incremental 2 run weeks).
- The run assumes three weeks operation and one maintenance weeks.
 Some extended run weeks for the latter part of operation.
- 3 4 month period is allocated between CD-4 and the research plasma operation.
- Will complete as much research run preparation tasks as possible prior to CD-4 to minimize the period between CD4 and the research plasma operation.

Strategy for Achieving Full NSTX-U Parameters

After CD-4, the plasma operation could quickly access new ST regimes

	NSTX (Max.)	FY 2015 NSTX-U Operations	FY 2016 NSTX-U Operations	FY 2017 NSTX-U Operations	Ultimate Goal
I _Р [МА]	1.2	~1.6	2.0	2.0	2.0
Β _τ [T]	0.55	~0.8	1.0	1.0	1.0
Allowed TF I ² t [MA ² s]	7.3	80	120	160	160
I_P Flat-Top at max. allowed I ² t, I _P , and B _T [s]	~0.4	~3.5	~3	5	5

- 1st year goal: operating points with forces up to ½ the way between NSTX and NSTX-U, ½ the design-point heating of any coil
 - Will permit up to ~5 second operation at B_T ~0.65
- 2nd year goal: Full field and current, but still limiting the coil heating
 - Will revisit year 2 parameters once year 1 data has been accumulated
- 3rd year goal: Full capability

Repair of the motor generator weld cracks to be completed June 2014 to enable full NSTX-U operation. We appreciate the funding made available this year!

10 Year Facility Plan Targets Research Goals

1.1 × (FY2012 + 2.5% inflation)

Significant Near-Term Upgrade Scopes Are Highlighted

ECH, Cryo-Pump and NCC system require resources starting in 2015

1 MW ECH system: Bridge T_e Gap Between CHI Start-up and HHFW + NBI Current Ramp-up Requirements

FY 2016 Perform MW-class ECH/EBW system engineering design for non-inductive operations. Incremental funding will enable start of engineering design and procurement in FY 2015.

Divertor Cryo-pumping for Particle Control in Long-pulse ELMy H-mode

Cryo-pump is proven technology for plasma density control

- More conventional pumped stationary ELMy H-mode scenario
- Enables comparison with lithium based pumping
- NSTX-U design will leverage DIII-D experience
 - Plenum located under new baffling structure near secondary passive plates
 - Pumping capacity of a toroidal liquid He cooled loop
 - S=24,000 I/s @ R=1.2m (Menon, NSTX Ideas Forum 2002)
 - Need plenum pressure of 0.6 mTorr to pump beam input (TRANSP)

Base - Perform cryo-system engineering design for particle control in FY 2016. Incremental funding will enable start of engineering design in FY 2015 and procurement in FY 2016.

MSTX-U

Apr. 17, 2014

NCC will greatly enhance MHD physics studies and control Range of off-midplane NCC coil configurations is assessed

- NCC (a facility enhancement) can provide various NTV, RMP, and EF selectivity with flexibility of field spectrum ($n \le 6$ for full and $n \le 3$ for partial)
- 6-channel Switching Power Amplifier (SPA) powers independent currents in existing EFC/RWM and NCC coils.

Base – No work on NCC until 2017. Incremental funding will enable start of engineering design in FY 2015 and procurement in FY 2016.

Solenoid-free Start-up High priority goal for NSTX-U in support of FNSF

FY 2014-15 Non-Inductive Start-up Systems Design for Post-Upgrade Operations

- CHI will start with the present 2 kV capability then enhanced to ~ 3 kV higher voltage as needed.
- PEGASUS gun start-up producing exciting results Ip ~ 160 kA. The PEGASUS gun concept is technically flexible to implement on NSTX once fully developed. High voltage gun for the NSTX-U will be developed utilizing the PEGASUS facility in collaboration with University of Wisconsin.

Strengthening HHFW Antenna Feeds for Disruption Loads

NSTX-U Lithium Capability During Initial Two Years Boronization, Lithium Evaporators, and Granular Injector

NSTX-U Day 1: Boronization planned for the initial operation to establish a base plasma performance prior to turning on lithium.

New Upward Evaporating LITER

• Upward Evaporating LITER to increase Li coverage for increased plasma performance

NSTX-U lithium granular injector

for ELM pacing

• High frequency ELM pacing with a relatively simple tool.

• ELM pacing successfully demonstrated on EAST (D. Mansfield, IAEA 2012)

Boundary Facility Capability Evolution NSTX-U will have very high divertor heat flux capability of ~ 40 MW/m²

Enhanced Capability for PMI Research Multi-Institutional Contributions

Apr. 17, 2014

Transport and Turbulence

BES together with high-k to provide comprehensive turbulence diagnostic

Energetic Particle Research Capabilities For NBI fast ion transport and current drive physics

Fast Ion D-Alpha Diagnostics

- A vertical FIDA system measures fast ions with small pitch, corresponding to trapped or barely passing (co-going) particles.
- A new tangential FIDA system measures co-passing fast ions with pitch ~0.4 at the magnetic axis up to 1 at the plasma edge.
- Both FIDA systems have time resolution of 10 ms, spatial resolution ≈5 cm and energy resolution ≈10 keV.

FY 2014 - 15 Energetic Particle Conceptual Design and Diagnostic Upgrade

- SS-NPA enhancement due to removal of scanning NPA
 UCI
- Proto-type active TAE antennas and sFLIP

2 x 2 5-turn radial active TAE antennas installed

Advanced Scenario and Plasma Control Tools for NSTX-U Real time rotation control and disruption mitigation

FY 2014-15:

- A Real-Time Velocity (RTV) diagnostic will be incorporated into the plasma control system for feedback control of the plasma rotation profile.
- Multi-poloidal location massive gas injector system for disruption mitigation will be implemented to test the efficiency vs location.

Base NSTX-U Facility/Diagnostic Milestones

Crucial to complete ECH/EBW and Cryo-pump Engineering Designs in FY 2015

Facility	Milestone Description	Baseline
F(14-1)	Complete installation and testing of refurbished D-Site Rectifier Firing Generators.	Sep 14
F(15-1)	Complete 18 run week research operation	Sep 15
F(15-2)	Complete high-Z tile design and begin procurement	May 15
F(15-3)	Begin electron cyclotron heating / electron Bernstein wave (ECH/EBW) system engineering design and gyrotron procurement.	Sep 15
F(15-4)	Develop cryo-pump engineering design concept	Sep 15
F(16-1)	Complete 16 run week research operation	Sep 16
F(16-2)	Complete ECH/EBW system engineering design and begin installation	Sep 16
F(16-3)	Complete cryo-pump engineering design and begin procurement of components	Sep 16

Diagnostics	Milestone Description	Baseline
D(14-1)	Complete the Multi-Pulse Thomson Scattering (MPTS) diagnostic in-vessel modifications	Apr 14
D(15-1)	Install and commission Material Analysis Particle Probe (MAPP)	Sep 15
D(16-1)	Install and commission high k_q diagnostic system	Mar 16

NSTX-U Optimized Plan Is Proposed for FY 2014 – 16 Exciting Opportunities and Challenges Ahead

NSTX upgrade outage activities are going well

- The Upgrade Project progressing on cost and on schedule. CD-4 completion in Dec. 2014 and the research operation starting in March 2015 for 18 run weeks.
- Researchers are preparing for NSTX-U operation while working productively on data analysis, collaboration, and five year plan.

• Exciting 5 Year NSTX-U research plan developed

- Provide necessary data base for FNSF design and construction.
- Provide new solutions to the plasma-material interface.
- Strong contribution to toroidal physics, ITER, and fusion energy development.
- FY 2014-15 budget guidance will enable the timely NSTX-U research operations start while completing the Upgrade Project.
 - The base budget restores the budget to the FY 2012 level (inflation adjusted) and enables timely start of the NSTX-U research operations.
 - Incremental budget will enable full facility utilization and a timely implementation of the Five Year Plan enhancements including ECH, Cryo-pump and partial NCC.

Backup Slides

Engineering / Research Operations Preparation Ramping up for the NSTX-U Operations in Dec. 2014

- Upgrading the Plasma Control System (PCS) for NSTX-U.
- Upgrading HHFW antenna feedthroughs for higher disruption forces.
- Boundary Physics Operations
 - Improving the PFC geometry at the CHI gap to protect the vessel and coils.
 - Upgrading gas injection system including the massive gas injection disruption mitigation system.
 - Boronization system will be readied to support initial research operations.
 - Preparing lithium systems (LITERs, granule injector for ELM trigger, upward LITER).
- Diagnostic Enhancements
 - MPTS re-alignment and laser dump relocation.
 - Fabricating new port covers to support high-priority diagnostics. The last large port being fabricated.
 - Installing additional, redundant magnetic sensors.
 - Upgrading diagnostics: Bolometry (PPPL), ssNPAs, spectroscopy (collaborators)
- Physics & Engineering Operations
 - Firing generators for 68 Transrex rectifiers replaced. Testing starting.
 - Repair of the Motor Generator radial arm weld cracks to complete in May.
 - Upgrading the poloidal field coil supplies to support up-down symmetric snowflake divertors on-going.

Repair of the Motor Generator (MG#1)

- In 2004, Magnetic Particle Inspections identified cracking in the weld fillet of multiple joints between the radial arms of MG#1. Cracks were in primary load paths, taking that set out of service. MG#2 is in limited operations (run and monitor at reduced parameters) with cracks in "stiffener" welds intended to limit elastic deformation (not in primary load paths).
 - Over 250" of welds in 19 rotor spider joints will be ground out and replaced to restore MG#1 to its original design configuration.
 - A jacking system has been engineered to relieve all loads on the rotor assembly during the repair.
 - PPPL and GE engineering collaborated on the detailed repair procedure (D/NSTX-RP-MG-07).

Status: Target completion date is June 2014

- A Statement of Work to perform the scope described in the repair procedure has been signed.
- Fixed-price proposals for the weld repairs have been received. A WAF capturing all project costs (PPPL and Sub-contractor) generated.
- •A draft Project Management Plan has been developed.
Incremental NSTX-U Facility / Diagnostic Milestones

Accelerates ECH/EBW, Cryo-pump, NCC enhancements by one year

Facility	Milestone Description	Baseline
F(14-1)	Complete installation and testing of refurbished D-Site Rectifier Firing Generators.	Sep 14
IF(15-1)	Complete 20 run week research operation	Sep 15
F(15-2)	Complete high-Z tile design and begin procurement	May 15
IF(15-3)	Complete electron cyclotron heating / electron Bernstein wave (ECH/EBW) system engineering design and begin gyrotron procurement.	Sep 15
IF(15-4)	Complete cryo-pump engineering design and begin procurement	Sep 15
IF(16-1)	Complete 20 run week research operation	Sep 16
IF(16-2)	Begin ECH/EBW system installation	Sep 16
IF(16-3)	Complete procurement of cryo-pump major components	Sep 16
IF(16-4)	Develop non-axisymmetric control coil (NCC) engineering design	Sept 16

Diagnostics	Milestone Description	Baseline
D(14-1)	Complete the Multi-Pulse Thomson Scattering (MPTS) diagnostic in-vessel modifications	Apr 14
D(15-1)	Install and commission Material Analysis Particle Probe (MAPP)	Sep 15
D(16-1)	Install and commission high k _q diagnostic system	Mar 16

NSTX-U FY 2016 FWP Manpower Summary Incremental budget enables 5 year plan implementation

FTEs	FY 2010	FY 2011	FY 2012	FY 2013	FY 2014	FY 2015		FY 2016		
	Actual	Actual	Actual	Actual	Base	Base	Incr	Warm SD	Base	Incr
Run Weeks	15.43	4.21	0	0	0	18	20	0	16	20
Science	36.2	36.1	29.7	28.3	32.8	40.6	45.6	33.2	39.8	44.8
Operations	71.1	78.03	36.7	38.2	47.9	88.3	89.7	67.2	88.3	91.3
Upgrade Project	29	25.9	69.3	69.5	67.9	11.8	11.8			
Facility Enhancemts	13.3	7.8	0.8			2.6	13.7		9.4	18.8
Total FTEs	149.6	147.83	136.5	136.0	148.6	143.3	160.8	100.4	137.5	154.9

FY15 - FY16 increment ensures operations and research staff for NSTX-U full research operation and for 5 year plan enhancements.

