Introduction to the Laboratory for Surface Modification and Experimental Measurements of Band Alignment

R.A. Bartynski

Director, Laboratory for Surface Modification Rutgers University Department of Physics and Astronomy 136 Frelinghuysen Road, Piscataway, NJ 08854

PPPL June 09

Laboratory for Surface Modification (LSM) A Cross-disciplinary Laboratory at Rutgers University

www.physics.rutgers.edu/LSM

The LSM: a multi-departmental group of researchers, centered in the Rutgers NanoPhysics Laboratory, whose primary mission is to promote research and education in the science and technology of surfaces and interfaces

Faculty Membership

• Physics & Astronomy – Bartynski (Director), Feldman, Gustafsson, Langreth, Madey, Vanderbilt, Zimmermann Chemistry and Chemical Biology – Garfunkel, Hinch, Uhrich

- Electrical and Computer Engineering Lu, Zhao
- Material Science Birnie, Chhowalla, Cosandey, Garofalini, Klein
- Chemical and Biochemical Engineering Moghe

Impact

- Education & Outreach
 - (Grad, UGrad, HS, Seminars, Symposium, IGERT)
- Telecommunications
- Micro- and nano-electronics
- Catalysis and Chemicals
- Pharmaceuticals
- Sensors
- Biomaterials
- Coatings

Facilities

Leading national surface analysis facilities. Unique instrumentation for ion scattering, electron stimulated desorption, surface optical spectroscopy, scanning probe microscopy, film growth with in-situ characterization

Research Focus Areas

Surface Physics

- Surface, interface and ultrathin film characterization
- Accurate determination of surface composition, structural, electronic, vibrational and optical properties.

Surface Chemistry and Catalysis

- Surface functionalization
- Organic-inorganic interfaces
- Structure sensitivity of reactions

Theory and Computation

- First principles electronic structure
- Fundamental theory development
- Monte Carlo, molecular dynamics....

Nanoscience

- NanoElectronics
- NanoSpintronics
- NanoPhotonics
- NanoCatalysis
- Molecular Electronics

Advanced Materials & Devices

- Electronic Materials
- Organic Electronics
- Novel Epitaxial Oxides

Energy Materials

- · Dye sensitized Solar cells surface passivation
- Organic-inorganic nanowire hybrids
- Single crystal organics
- · Energy storage materials

Facilities

Laboratory for Surface Modification, Rutgers University

www.physics.rutgers.edu/LSM

Medium Energy Ion Scattering (MEIS)/Thin Film Growth and Characterization Facility:

- 400 KeV ion scattering with toroidal electrostatic energy analyzer for high energy and angular resolution
- Atomic layer-resolved depth profiling
- in-situ ALD w/FTIR characterization
- Additional growth and characterization modules

Rutherford Backscattering Spectrometry:

- 2 MeV tandetron accelerator with multiple Si detectors
- Elemental depth profiling w/ 10 nm resolution
- H recoil scattering

TGERS

Additional growth and characterization modules

Direct and Inverse Photoemission Facility:

- Probes both occupied (valence band) and unoccupied (conduction band) states of sample in single chamber
- Rapid load-lock
- in-situ metallization and gas-dosing capabilities
- Additional surface characterization / surface prep.

Facilities Laboratory for Surface Modification, Rutgers University

www.physics.rutgers.edu/LSM

Scanning Probe Microscopy

- Variable temperature STMs
- Atomic Force Microscopes
- MFM, Spin polarized STM
- Low T/High H STM

ESCA Facility

- KRATOS machine
- Rapid sample intro
- Sample prep with UHV sample transfer
- Multiple sample capability

Scanning Transmission Electron Microscopy:

- JEOL 2010F / GATAN
- Field emission source
- EELS
- 1.7 Å resolution

Facilities Laboratory for Surface Modification, Rutgers University

www.physics.rutgers.edu/LSM

Atomic Layer Deposition (ALD)

- Layer-by-layer conformal growth
- Oxide film growth
- In-situ FTIR characterization
- Si, Ge, GaAs substrates

Oxide MBE

- Atomic layer epitaxial growth
- Metastable oxide systems
- UHV sample transfer
- Multiple source

MOCVD

- Conformal oxide coatings
- ZnO and TM precursors

VLS

Ge nanowire synthesis

Probing Energy Level Alignment with Direct and Inverse Photoemission

Experimental Principle

Photoemission (Occupied States)

Inverse Photoemission (Unoccupied States)

Experimental tools

UPS, IPS in single UHV chamber

Metallization, gas dosing, Auger, LEED, sputtering, rapid sample intro

Energy level alignment of dye molecules at oxide surfaces for dye-sensitized solar cell applications

RUTGERS A Dye Sensitized Solar Cells (DSSCs)

Energy Level Alignment

Comparison with DSSC Operation

RUTGERS

Band alignment in Metal / high-κ / Semiconductor gate stacks

RUTGERS Movitation

MOSFET

metal high-κ SiO₂ Si

Summary: Oxide-Si Band Offsets

RUTGERS

Experimental CBO: Ru/HfO₂

RUTGERS THANKS !!!

THE STATE UNIVERSITY OF NEW JERSEY

Dr. Sylvie Rangan

Ryan Thorpe

Jean-Patrick Theisen

Prof. Elena Galoppini

Eric Bersch

END