

JERSEY

O.F.

Quantitative Nanomechanical Measurements: Surfaces and Thin Films

Adrian B. Mann

Dept. of Materials Science & Engineering

Cracking of an oxidized low-k dielectric

Apatite-collagen lamellae of trabecular bone

First "nanoindenters" in Ion Implantation into Metals (1982):

Newey, Pollock & Wilkins

Optical imaging is not feasible on the nanoscale, so depth/load sensing instruments are vital.

Nanomechanics

Measuring Hardness and Elastic Modulus

RUTGERS

Atomic Force Microscopes

NORMAL OPERATION- DISPLACEMENT CONTROLLED

Advantages: Easy to use, commercial instruments.

Disadvantages:

Forces are inferred from knowledge of the instruments compliances.

FORCE CONTROLLED OPERATION

<u>Advantages:</u> Can measure forces directly.

Disadvantages: Hard to use and even harder to make.

Nanomechanics

Rutgers

Nanomechanics

Residual strains in epitaxial II-VI Semiconductor Films on GaAs Substrates

Sample Description	Film Thickness	Lattice Mismatch	Comments
GaAs	Not a film	Not relevant	Control Sample
ZnMgSSe-A	Nearly 1 µm	Negligible	Medium Mg content
ZnMgSSe-B	Nearly 1 µm	Negligible	High Mg content
ZnMgSSe-C	Nearly 1 µm	Negligible	Low Mg content
. ZnSSe	0.74 µm	da/a = 0.11%	In compression
ZnMgSSe-D	1 <i>µ</i> m	da/a = -0.05%	In tension
ZnSe	1.1 <i>µ</i> m	da/a = 0.25%	In compression

Due to the lattice mismatch between substrate and film some of these are in tension or compression.

Rutgers

Nanomechanics

ZnSSe (compressive strains)

At very shallow depths the film is elastic, but then give a highly reproducible discontinuity.

Nanomechanics

ZnMgSSe-D (tensile strain)

At shallow depths the film is very soft, but then still gives a highly reproducible discontinuity at higher loads.

In this case discontinuity occurs when plastic deformation commences in the substrate.

Nanomechanics combined with other measurements

Electrical Set-Up

Acoustic Set-Up

40

20

0

Applied Force (mN)

FORCE/DISPLACEMENT, CONTACT RESISTANCE AND RECTIFICATION DATA

Summary

•Can quantify elastic modulus and hardness, also viscoelastic properties on the sub-micron scale.

•Quantify surface mechanical effects due to ion implantation, oxides, residual strains, work-hardening, surface energy/stresses,...etc.

•Nanomechanical measurements combined with other tools provides additional information (e.g. electric, acoustic or spectroscopic measurements).

•Combining techniques enables different effects to be distinguished – for instance residual strains and work hardening.

•Can be used to verify materials modeling of mechanical behavior using finite element, molecular dynamic or quasi-continuum models.