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Quantity BES measures is Density Fluctuation. 
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ZFs are not divergence free in a tokamak. 
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So, consequences are generating sZF and/or GAMs. 
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Structure of GAMs: (m, n) = (0, 0) and (1, 0) 

6 /  

Both modes have the same temporal behavior: 

Winsor et al. Phys. Fluids 11, 2448 (1968) 
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Spatial structure of GAMs 

€ 

˜ φ GAM
m=1 ~ ε ˜ φ GAM

m=0  
            where ε is the inverse aspect ratio.

€ 

˜ φ GAM
m=1 ~ −sin θ( )
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Density response to GAMs 
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Due to m = 0 mode of GAM: 

€ 

˜ φ GAM
m =0 →  Polarization Drift →  Density fluctuation

        → ˜ n GAM
m =0 ~ krρi( )2 ˜ φ GAM

m =0

Due to m = 1 mode of GAM: 

€ 

˜ φ GAM
m =1 →  e- Boltzmann Response →  Density fluctuation

        → ˜ n GAM
m =1 ~ ˜ φ GAM

m =1 ~ ε ˜ φ GAM
m =0

Temporal behavior of density fluctuation: 

€ 

ωGAM
2 =

CS
2

q2R2
1+ 2q2( ) because this is slow phenomena. 
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Detecting ñGAM using 2D BES 
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€ 

˜ n GAM = Am =0 exp iωGAM t( ) − Am =1 sin θ( )exp iωGAM t( )
•  BES cannot detect m=1 mode of ñGAM because observation position is mid-plane. 
•  How about m= 0 mode of ñGAM? 

Krämer-Flecken et al. Phy. Rev. Lett. 97, 045006 (2006) 
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BES can detect GAMs from motions of ñ. 
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To the perpendicular direction on a given flux surface: 

€ 

˜ v ⊥GAM
m =0 = −kr

˜ φ GAM
m =0( ) /B

˜ v ⊥GAM
m =1 = −kr

˜ φ GAM
m =1( ) /B

These induce oscillating perpendicular 
motion of ñ. 

To the radial direction: 

These induce oscillating radial motion of ñ. 
But, their magnitudes may be small.  

€ 

˜ v r GAM
m =0 =

ωGAM

ωC B
kr

˜ φ GAM
m =0

˜ v r GAM
m =1 = −kθ ˜ φ GAM

m =1( ) /BΦ
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Conclusion I 
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As physicists, we want to know 
•  how zonal flows are generated.  
•  how they suppress turbulence. 

First, we need to confirm existence of zonal flows. 

Try to observe ñ associated with zonal flows. In general, not easy. 

Try to observe ñ associated with GAMs.  Hard with BES at the midplane 

Try to observe GAM induced motions of ñ Possible with BES 
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Statistical analyses are performed on a GPU. 
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DIII-D BES Data 
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I have two sets of data which each consists of 

•  7 poloidally separated channesl 

•  with 11 mm separation 

•  for about little bit more than ~ 2 seconds worth 

•  with 1MHz sampling frequency 
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Data Set #1: Density spectrogram (Ch.1) 
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Some MHD modes? 

IAW modes? 
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Data Set #1: Density spectrogram (Ch.1 and 7) 
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Mean flows in a tokamak is mostly toroidal. 
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Mean flows in a tokamak is mostly toroidal. 
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Poloidal motion: mostly ‘barber pole’ effect. 
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Poloidal velocity from barber shop effect is close to ExB drift velocity. 
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In addition, we have GAM induced velocity. 
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Conclusion III 

We have to be careful when we say ‘poloidal motion’ of a 
plasma in a tokamak measured by BES. 

  Poloidal motion of plasma  small (on the order of diamagnetic flow) 

  Poloidal motion of patterns  can be on the order of ExB flow (due 
to ‘barber pole’ effect) 
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Eddies generated by using GPU (CUDA programming) 
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Equation to generate ‘eddies’ 

Assumed that eddies have Gaussian shapes in R, z, and t-directions plus wave 
structure in z-direction. 
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vz(R,t) is set to have sheared and GAM induced flows. 
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€ 

vz R,t( ) = ˜ v z R,t( ) *exp −
t 2
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Synthetic BES data are generated by using PSFs and generated eddies. 
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vz(t) is estimated using the CCTD method. 
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Data Set #1: Mean vz(t) of plasma patterns 
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Back-of-envelope calculation of detectable range 
of mean velocity using CCTD method 

Upper Limit Lower Limit 

Using adjacent 
Channel 

40 km/s 1.3 km/s 

Using Farthest apart 
channels 

120 km/s 4.0 km/s 

Numerical Results ~ 80 km/s ~ 5 km/s 

  Sampling Frequency: 2 MHz  0.5 usec 
  Adjacent channel distance: 2.0 cm 
  Farthest apart channel distance: 6.0cm 
  Life time of an eddy: 15 usec (This plays a role in lower limit. i.e. 
before an eddy dies away, it needs to be seen by the next channel.) 
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Numerical results of detecting mean velocities. 
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Upper limit 

Lower limit 
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Numerical results of detecting fluctuating velocities. 
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Numerical results of detecting fluctuating velocities. 
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Conclusion IV 
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  We saw upper and lower limits of detectable mean flow 
velocity using BES with CCTD technique. 

o  Upper Limit is set by 
1)  Sampling frequency 
2)  Distance from a channel to next one 

o  Lower Limit is set by 
1)  Life time of a structure 
2)  Distance from a channel to next one 

  We saw that 
o  The worse the NSR, the harder to detect GAMs  
o  the faster the mean flow, the harder to detect GAMs 
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Data Set #1: Mean vz(t) of plasma patterns 
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Data Set #1: Fluct. vz(t) of plasma patterns 

Density is filtered 50.0 kHz < f < 100.0 kHz before vz(t) is calculated.  
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Data Set #1: Fluct. vz(t) of plasma patterns 

Density is filtered 0.0 kHz < f < 30.0 kHz before vz(t) is calculated.  
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Conclusion V 
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  As we just saw, detecting GAM features are not 
straight forward. 

o  It may be helpful to consider radial motions as well since we 
have radial motions of eddies due to  

1)  Polarization drift 
2)  Finite poloidal wave-number associated with m=1 mode of GAM 
 However, we do not know whether these radial motions are big 

enough to be seen by the 2D BES. 
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Final Conclusions 
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1.  Discussed about ZFs, sZFs, and GAMS. 
  Because of the observation positions of 2D BES, we use GAMs 

to “confirm” the existence of zonal flows. 

2.  Discussed the meaning of poloidal velocities seen by the 2D 
BES. 
  BES sees poloidal motions of ‘plasma patterns’ rather than bulk 

plasmas. 

3.  Discussed detectable ranges of poloidal motions using the 
CCTD method. 
  Mean vz: sampling freq., ch. separation dist., lifetime of eddies. 
  Fluct. vz: NSR levels, vGAM/vmean. 

4.  DIII-D data showed that we have to be careful for detecting 
GAM-like features. 
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Data Set #2: Density spectrogram (Ch.1) 
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Data Set #2: Density spectrogram (Ch.1) 
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Some MHD modes? 

IAW modes? 

Probably LH transition 
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Data Set #2: Density spectrogram (Ch.1 and 7) 
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Data Set #2: Mean vz(t) of plasma patterns 
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Data Set #2: Fluct. vz(t) of plasma patterns 

Density is filtered 50.0 kHz < f < 100.0 kHz before vz(t) is calculated.  
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Data Set #2: Fluct. vz(t) of plasma patterns 

Density is filtered 0.0 kHz < f < 30.0 kHz before vz(t) is calculated.  


