

Progress in understanding turbulence on the ion and electron gyroscales in NSTX plasmas

David R. Smith

University of Wisconsin-Madison

Experimental Seminar, PPPL March 22, 2011

Culham Sci Ctr **U St. Andrews** York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Beam emission spectroscopy (BES) and high-k scattering provide turbulence measurements spanning the ion to electron gyroscales

Experimental Seminar, PPPL – D. R. Smith – 3/22/2011

Outline

- BES diagnostic overview and preliminary results
 - Reversal of eddy poloidal motion in pedestal across LH transition
 - Preliminary |B| scaling for poloidal correlation lengths
 - Post-ELM harmonic features (~50-150 kHz) localized at top of pedestal
- Review of high-k scattering measurements and ETG turbulence results
 - Is ETG turbulence anisotropic in k_{θ} - k_r plane as predicted by GK simulations?
- Identification of high-k microtearing modes
 - Comparison to ETG modes, ITG/TEM modes, and conventional microtearing modes
- Low coherence backscattering
 - Novel plasma fluctuation measurement (1-D profile and 2-D imaging) that uses low coherence radiation
 - Inspired by a biomedical imaging technique
- Summary

Outline

- BES diagnostic overview and preliminary results
 - Reversal of eddy poloidal motion in pedestal across LH transition
 - Preliminary |B| scaling for poloidal correlation lengths
 - Post-ELM harmonic features (~50-150 kHz) localized at top of pedestal
- Review of high-k scattering measurements and ETG turbulence results
 - Is ETG turbulence anisotropic in k_{θ} -k_r plane as predicted by GK simulations?
- Identification of high-k microtearing modes
 - Comparison to ETG modes, ITG/TEM modes, and conventional microtearing modes
- Low coherence backscattering
 - Novel plasma fluctuation measurement and imaging technique that utilizes low coherence microwave/FIR sources
 - Inspired by a biomedical imaging technique
- Summary

Beam emission spectroscopy provides localized, long-wavelength fluctuation measurements with $k_{\perp}\rho_i < 1$

 BES measurements contribute to several NSTX research areas

WISCONSIN

interference photodiode optical neutral beam Turbulence and transport filter fibers ITG/TEM turbulence field lines ZEs and GAMs conditioning electronics high throughput Flow fluctuations red-shifted & DAO collection optics $D\alpha$ emission Boundary physics I H transition Simulated spectrum 1.0 Emission intensity (au) Pedestal & SOL fluctuations **CII** Lines Interference filter 0.8 ELMs and EHOs for BES photodetector 0.6 Thermal Da & CX Waves-particle interactions 0.4 NB Da (full, 1/2, TAE/EP/GAE modes 0.2 and 1/3 energy) Mode coupling 0.0 656 658 660 662 Wavelength (nm)

The NSTX BES system was commissioned in 2010

- Doppler shift and optical filter isolate NB D_{α} emission from thermal D_{α}
 - R140 R130 =/150 cm R =100 cm neutral beams

 Two optical views are aligned to steep pitch angles in NSTX plasmas

D. R. Smith et al, **RSI** 81, 10D717 (2011)

Two optical views with 56 fiber bundles provide radial coverage from r/a ≈ 0.1 to SOL with 2-3 cm spot sizes

Image patterns provide radial and poloidal correlation lengths, k-spectra, and flow fluctuations

WISCONSIN

Decrease in fluctuations at LH transition observed from edge to core in some discharges

Also, some HL back-transitions have exhibited an increase in fluctuations

WISCONSIN

Decrease in fluctuations at LH transition observed from edge to core in some discharges

Experimental Seminar, PPPL – D. R. Smith – 3/22/2011

Correlation analysis indicates the apparent motion of eddies changes from up to down at the LH transition

Poloidal coherency/correlation in 138850 at R = 140 cm

L-mode phase: 219-249 ms

H-mode phase: 266-287 ms

WISCONSIN

|B| scan: BES auto-power spectra do not exhibit a trend

NSTX confinement scaling (Kaye et al, NF (2007)): $\tau_e \sim B_T \sqrt{I_P}$

|B| scan: Cross-correlation analysis indicates poloidal correlation lengths decrease at higher |B|

Post-ELM harmonic features at 50-100 kHz are localized at the top of the pedestal

Harmonic features are either absent from or weakly present in magnetic spectra

NSTX WISCONSIN

 \bigcirc

TAEs and GAEs have been observed in extended radial regions

TAE burst

GAE mode

Heidbrink, CO4

Tritz, PI2

Outline

- BES diagnostic overview and preliminary results
 - Reversal of eddy poloidal motion in pedestal across LH transition
 - Preliminary |B| scaling for poloidal correlation lengths
 - Post-ELM harmonic features (~50-150 kHz) localized at top of pedestal
- Review of high-k scattering measurements and ETG turbulence results
 - Is ETG turbulence anisotropic in k_{θ} - k_r plane as predicted by GK simulations?
- Identification of high-k microtearing modes
 - Comparison to ETG modes, ITG/TEM modes, and conventional microtearing modes
- Low coherence backscattering
 - Novel plasma fluctuation measurement and imaging technique that utilizes low coherence microwave/FIR sources
 - Inspired by a biomedical imaging technique
- Summary

The NSTX high-k scattering system measures fluctuations up to $k_{\perp}\rho_{e}$ < 0.6

- 280 GHz collective scattering system
- Five detection channels
 - k_{\perp} spectrum for up to five discrete k_{\perp}
 - $k_{\perp}\rho_{e} \leq 0.6$ and $k_{\perp} < 20$ cm⁻¹
 - $-\omega$ spectrum from time-domain sampling
 - 7.5 MS/s \rightarrow f \leq 3.25 MHz
 - Heterodyne detection
- Tangential scattering
 - Beams nearly on equatorial midplane
 - Sensitive to radial fluctuations
 - Toroidal curvature enhances spatial localization along probe beam,
 ΔL ≈ 10 cm
 - Radial localization, ΔR ≈ ±2.5 cm
- Steerable optics
 - Scattering volume can be positioned throughout the outer half-plasma

D. R. Smith et al, RSI 79, 123501 (2008)

Measurements show enhanced ETG-scale fluctuations when ∇T_e is comparable to the ETG critical ∇T_e

E. Mazzucato, D. R. Smith, et al, **PRL** 101, 075001 (2008) D. R. Smith, Ph.D. thesis (2009)

Near ETG marginal stability, fluctuation amplitudes decrease when the E×B shear rate exceeds the ETG growth rate

D. R. Smith et al, **PRL** 102, 225005 (2009) D. R. Smith, Ph.D. thesis (2009)

Recent high-k/ETG results and upcoming experiments

- Additional high-k/ETG results including fluctuation k-spectra
 - D. R. Smith et al., **PoP** 16, 112507 (2009)
- Recent high-k/ETG results
 - Reverse shear stabilization of ETG: H. Yuh et al, **PRL** 106 (2010)
 - Density gradient stabilization of ETG: Y. Ren et al., in press in **PRL** (2011)
- GK simulations predict ETG-driven electron thermal transport is associated with anisotropic ETG turbulence in the k_r - k_{θ} plane.

Question: Are high-k scattering measurements of ETG turbulence isotropic or anisotropic in the k_r - k_{θ} plane?

NSTX experiments (D. Smith and Y. Ren) are investigating this question.

Outline

- BES diagnostic overview and preliminary results
 - Reversal of eddy poloidal motion in pedestal across LH transition
 - Preliminary |B| scaling for poloidal correlation lengths
 - Post-ELM harmonic features (~50-150 kHz) localized at top of pedestal
- Review of high-k scattering measurements and ETG turbulence results
 - Is ETG turbulence anisotropic in k_{θ} -k_r plane as predicted by GK simulations?
- Identification of high-k microtearing modes
 - Comparison to ETG modes, ITG/TEM modes, and conventional microtearing modes
- Low coherence backscattering
 - Novel plasma fluctuation measurement and imaging technique that utilizes low coherence microwave/FIR sources
 - Inspired by a biomedical imaging technique
- Summary

Microtearing modes below the ion gyroscale can be linearly unstable near the core of a NSTX plasma

- Narrower Φ and broader A_{\parallel} mode structures
- Toroidal n \approx 50 is comparable to conventional microtearing modes
- High-k microtearing modes near the magnetic axis are consistent with conventional microtearing modes with large ρ_s/r values

D. R. Smith et al, **PPCF** 53, 035013 (2011)

High-k microtearing growth rates can be greater than low-k DW growth rates and comparable to ETG growth rates

• High-k microtearing growth rates are greater than low-k drift-wave growth rates and located deeper in the core

- High-k microtearing growth rates are comparable to ETG growth rates
- High-k microtearing modes are located in the core, but ETG modes are located in the outer plasma

D. R. Smith et al, PPCF 53, 035013 (2011)

Outline

- BES diagnostic overview and preliminary results
 - Reversal of eddy poloidal motion in pedestal across LH transition
 - Preliminary |B| scaling for poloidal correlation lengths
 - Post-ELM harmonic features (~50-150 kHz) localized at top of pedestal
- Review of high-k scattering measurements and ETG turbulence results
 - Is ETG turbulence anisotropic in k_{θ} -k_r plane as predicted by GK simulations?
- Identification of high-k microtearing modes
 - Comparison to ETG modes, ITG/TEM modes, and conventional microtearing modes
- Low coherence backscattering
 - Novel plasma fluctuation measurement and imaging technique that utilizes low coherence microwave/FIR sources
 - Inspired by a biomedical imaging technique
- Summary

Low coherence radiation provides a mechanism for achieving spatial localization along a probe beam

- Low coherence back-scattering (LCBS)
- Adapted from optical coherence tomography, a biomedical imaging technique that constructs images from depth scans in tissue
- Mirror location for reference beam fixes the measurement location
- Scalable for 1-D profile measurements and 2-D imaging

LCBS measurements can reconstruct a 1-D density profile using a single probe beam

- Interferometry measurements are line-averaged, but LCBS measurements are spatially localized
- Scattering measurements are plagued by spurious reflections, but LCBS is immune to spurious reflections
- Reflectometry measurements are hindered by irregular wave-fronts at the cut-off layer, but LCBS frequencies exceed cut-off frequencies
- Reflectometry measurements can not measure density minima, but LCBS can measure any density profile
- BES measurements require a neutral beam, but LCBS measurements are possible without a neutral beam

D. R. Smith, patent pending (2011)

Summary

- BES and high-k scattering diagnostics are valuable tools for studying turbulence spanning the ion and electron gyroscales in NSTX plasmas
- High-k scattering measurements
 - Strong evidence for the existence of ETG turbulence
 - Demonstration of E×B flow shear suppression of ETG turbulence
- BES measurements
 - Preliminary results indicate poloidal correlation lengths are on the order of 10 cm and decrease at higher |B|
 - Flow reversal at LH transition and post-ELM harmonic features point to intriguing pedestal dynamics
- Microtearing modes below the ion gyroscale can be linearly unstable near the core of NSTX plasmas
 - Growth rates comparable to ETG growth rates, but core localized
- Low coherence back-scattering
 - Novel plasma fluctuation measurement technique for 1-D profiles or 2-D imaging using low coherence radiation
 - Adapted from a biomedical imaging technique

Backup

Measured spectra exceed e-noise and signal amplitudes correspond to NB power

Measured spectra exceed e-noise

-40 10 R = 128 cm5 R = 131 cm 5 Power (V²/Hz; dB) -60 138756 0.8 010 0.8 0.4 0.6 0.2 0.4 0.6 0.2 138690 138543 Ch. 4 138543 Ch. 3 10 138543 -80 R = 134 cmR = 137 cm5 signal (V) 1444101 e-noise -100 610 0.2 0,6 0.8 0,6 0.8 0.4 0.2 0.4 500 100 200 300 400 0 Frequency (kHz) time (s) NB Power (MW) E-noise and photon noise must be

removed from measured spectra to isolate plasma fluctuation spectra

DC signals correspond to NB power

0

200

400

Time (ms)

600

800

1000

Ip scan: Auto-power spectra do not exhibit a trend

Ip scan: Poloidal correlation lengths do not show a clear trend

Collective scattering provides density fluctuation measurements with spatial and k-space localization

3-wave coupling among 2 high-frequency EM waves and 1 low-frequency plasma fluctuation

k-matching: $\vec{k_s} = \vec{k_i} + \vec{k}$ Bragg condition: $k = 2k_i \sin(\theta_s/2)$ k-space resolution: $\Delta k = 2/a$ frequency matching: $\omega_s = \omega_i + \omega$ high-freq EM waves: $\omega_i, \omega_s >> \omega$