

Wave-Particle Interactions TSG Mid-Run Assessment

College W&M Colorado Sch Mines

Columbia U

Comp-X
General Atomics

INL

Johns Hopkins U

LANL

LLNL

Lodestar

MIT

Nova Photonics

New York U

Old Dominion U

ORNL PPPL

PSI

Princeton U

Purdue U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

UCSD

U Colorado

U Marvland

U Rochester

U Washington

U Wisconsin

G. Taylor, leader

M. Podestà, deputy

N. Gorelenkov, theory and modeling

NSTX Mid-Run Assessment Meeting

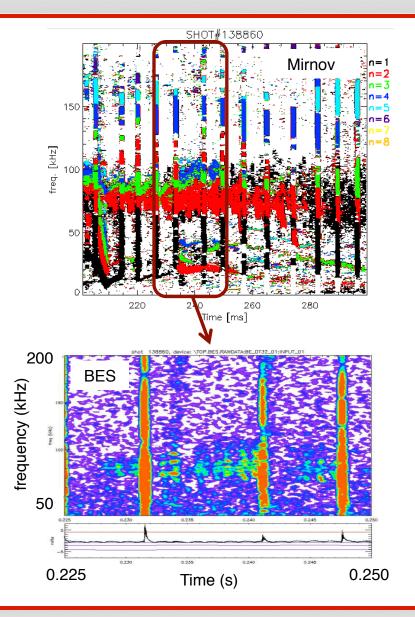
August 27, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Hebrew U Ioffe Inst **RRC Kurchatov** Inst TRINITI KBSI KAIST **POSTECH ASIPP** ENEA. Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep U Quebec

Overview

- One EP 1st tier XP run so far
 - XP-1011: "TAE/GAE avalanches studies in H-mode deuterium plasmas" (Fredrickson)
- Two RF 1st tier XP's (partly) run so far
 - XP-1017: "RF heating at the divertor SOL regions" (Hosea) 1 hour run time
 - XP-1009: "HHFW heating of low $T_e(0)$, I_p plasmas" (Taylor) 1/2 day run time
- RF XMP-26 run, 5.5 days in June + 2 days in July
 - HHFW plasma conditioning: issues in coupling > 1.5 MW reliably
- Four HHFW 1st tier XP's (4+1^{SFSU} run days) pending, based on availability of HHFW System
- Three EP 1st tier XP's (1.5 run days) scheduled
- Three EP, two HHFW 2nd tier XP's (2 run days)

Status of XP Results


XP-1011: TAE avalanches in H-mode plasmas

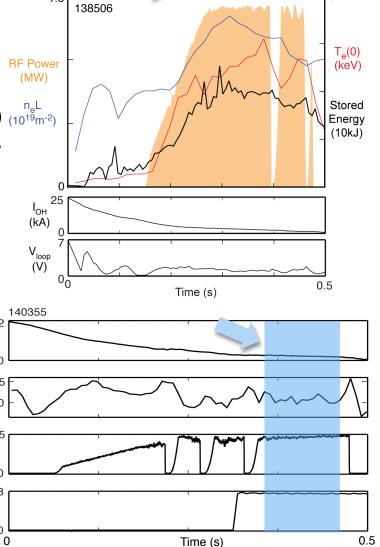
Goals: Develop target plasma with TAE avalanches

- Study threshold for avalanches as a function of density, NB power, toroidal field
- Optimize target for mode amplitude measurements with BES, USXR and interferometer

Results: XP completed

- TAE avalanches obtained in H-mode plasma
 - Partial density, TF and outer gap scans performed
 - First BES data on mode amplitude collected (outer views only – shutter issues)

XP-1009: HHFW heating of low T_e , I_p plasmas


Goals: Generate non-inductive H-Mode discharge at $I_p \sim 200-300 \text{ kA}$

Results:

• XP run time 0.5 day (vs. 1.5^{SFSU} days allocated) (1019 m⁻²)

• June 14: Heated $I_p = 300$ kA plasma with 1.4 MW of $k_{\phi} = -8$ m⁻¹ RF heating

- Measured good electron heating during RF Hmode (138506)
- August 25: Heated $I_p = 300$ kA plasma with 1.5 MW of $k_\phi = -8$ m⁻¹ RF & 3 MW NBI heating
 - Measured V_{loop}~0 and dI_{OH}/dt~0 during RF
 + NBI heating (140355)
- Need to increase P_{rf} to 2-3 MW:
 - Power limited by Li influx

H-Mode

I_{OH}

 $V_{loop} (V)$

RF Power (MW)

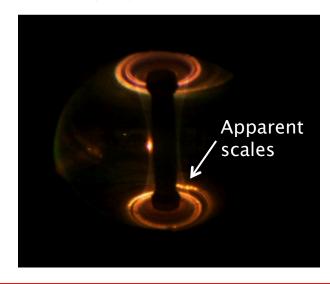
NBI Power

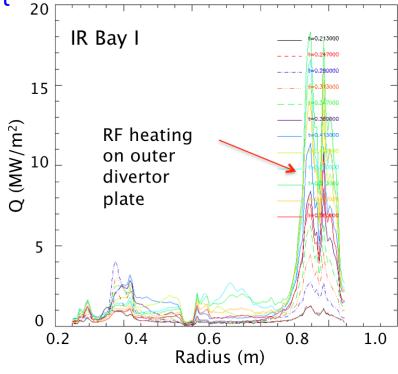
(MW)

XP-1017: Divertor SOL heating during HHFW

Goals: Understand HHFW edge heating, Help benchmark edge heating effects in RF heating codes

Results: Scan of magnetic field pitch June 9 (1 hour) at P_{RF} =2 MW


 $-I_p(MA)/B_T(kG) = 0.8/5.5, 0.8/4.5, 0.9/4.5, 1.0/4.5$


Divertor RF heating inner radius moves with pitch

IR measurement complicated by apparent scales of lithium on outer divertor plate

→ need to condition scales away

...Miro2-7988/2010/nstx_2_138398.cin at 450.023 ms

Remaining 1st & 2nd Tier XPs

Remaining 1st and 2nd Tier WPI TSG XPs would require ~6+1.5 Run Days

- WPI-11/16/19:M3D-K validation for Alfvénic modes [1] 0.5 day EP-2
- WPI-18:*AE induced electron transport [1] 0.5(1) day EP-2, TC-12
- WPI-14/21:Study of Angelfish instability & effect of HHFW [1] 0.5 days EP-2
- WPI-1:100% non-inductive RF H-mode [1] 1(1.5) days R10-2, IOS-5.2
- WPI-3:HHFW power coupling vs ELMs [1] 1 day R10-2 *ITER
- WPI-6/15:HHFW heating in NB heated plasmas [1] 1 day R10-2, IOS-5.2
- WPI-4:RF heating at divertor/SOL regions [1] 0.5 days R10-2, IOS-5.2
- WPI-7:EPM effects on fast ion transport & current profile [2] (0.5) days EP-2
- WPI-12:Conversion of AEs to Kinetic Alfvén waves [2] 0 days EP-1
- WPI-17:Clamping of edge rotation by HHFW [2] (0.5) days R10.2, TC-9
- WPI-26:MSE measurements of HHFW-CD [2] 0 days R10.2

[1] priority 1st (1st & 2nd) priority days assigned Milestone/ITER/ITPA

Present conditions of HHFW system lead to reconsider/re-prioritize WPI TSG experiments

- WPI-11/16/19:M3D-K validation for Alfvénic modes [1] 0.5 day EP-2
- WPI-18:*AE induced electron transport [1] 0.5(1) day EP-2, TC-12
- WPI-14/21:Study of Angelfish instability & effect of HHFW [1] 0.5 days EP-2
- WPI-1:100% non-inductive RF H-mode [1] 1(1.5) days R10-2, IOS-5.2
- WPI-3:HHFW power coupling vs ELMs [1] 1 day R10-2 *ITER
- WPI-6/15:HHFW heating in NB heated plasmas [1] 1 day R10-2, IOS-5.2
- WPI-4:RF heating at divertor/SOL regions [1] 0.5 days R10-2, IOS-5.2
- WPI-7:EPM effects on fast ion transport & current profile [2] (0.5) days EP-2
- WPI-12:Conversion of AEs to Kinetic Alfvén waves [2] 0 days EP-1
- WPI-17:Clamping of edge rotation by HHFW [2] (0.5) days R10.2, TC-9
- WPI-26:MSE measurements of HHFW-CD [2] 0 days R10.2

[1] priority 1st (1st & 2nd) priority days assigned Milestone/ITER/ITPA

Proposal for WPI-TSG experiments for the remaining of the Run: Must take into account status of HHFW

Prioritize remaining run time for WPI TSG XPs depending on availability of HHFW

	Experiment	BES	no RF	P _{RF} ~2MW	P _{RF} >2MW
	RF in low T _e ,I _p plasmas [0.5 day]			1	1
	HHFW coupling and ELMs				1
	RF heating at divertor SOL [1 hour]			0.8	0.8
	RF heating efficiency and fast ion accel. in NB plasmas			0.5 (?)	1
	Angelfish instability (+ RF effects)		0.5	0.5	0.5
	TAE avalanches in H-mode [0.5 day] (FY-12 Milestone)		+0.5		
	*AEs and electron transport (APS invited)		1	1	1
	M3D-K code validation for TAEs (FY-12 Milestone)		0.5	0.5	0.5
`	EPMs: confinement, I _p modifications (high-speed camera)		0.5		
	Conversion of *AEs to kinetic *AEs (FY-12 Milestone)		0.5		
	Clamping of edge rotation by HHFW			0.5 (?)	
_	Rotation effects on TAEs through n=3 braking		0.5 (?)		

^{*} Run time so far

2nd priority

√ desired

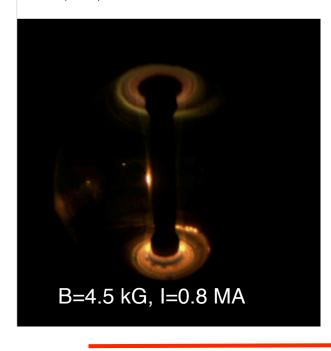
√ required

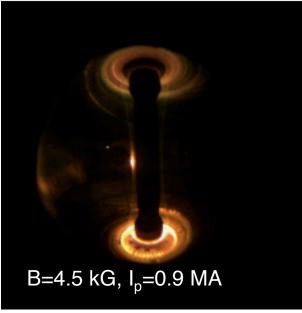
- Decision made based on next week's RF vacuum conditioning
- Need to fix BES shutter issues for (most of) EP experiments

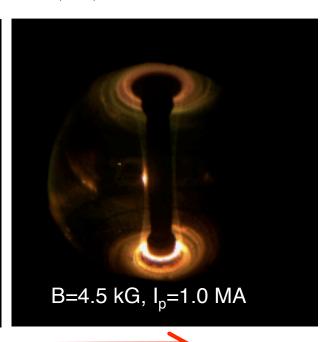
^{*} Proposed run time (days)

^{*} Notes

Backup slides




XP-1017: Divertor heating dependence upon magnetic field pitch


.../2010/nstx_2_138395.cin at 396.093 ms

.../2010/nstx_2_138396.cin at 396.093 ms

.../2010/nstx_2_138398.cin at 396.093 ms

pitch increases

"Hot zones" sweep to divertor regions at smaller *R* as pitch increases

Energetic Particles experiments - 2 (3) days

- WPI-8/9:H-mode TAE/GAE avalanches [1] 0.5 days EP-2
- WPI-11/16/19:Characterize low freq. Alfvénic modes [1] 0.5(1) day EP-2*ITER
- WPI-14/21:Study of Angelfish instability & effect of HHFW [1] 0.5 days EP-2
- WPI-18:*AE induced electron transport [1] 0.5 days EP-2, TC-12
- WPI-7:EPM effects on fast ion transport & current profile [2] (0.5) days EP-2
- WPI-12:Conversion of AEs to Kinetic Alfvén waves [2] 0 days EP-1
- WPI-25:Error field modulation of TAEs [3] 0 days EP-2
- WPI-22:Study of co-propagating CAEs piggyback, but BES limited to 1MHz
- WPI-28:Study of High Energy Feature with NPA [3] 0 days EP-2
 Requires no-Lithium scenario
- WPI-10:Energetic particle driven GAM [3] 0 days
 Needs reversed I_p
- WPI-13:Red/blue Doppler shift in FIDA spectra [3] 0 days
 Needs reversed B_{tor} or I_p
- XMP?:Plasma jogs to measure *AE mode structure w/ interferometer

```
*ITER = Possible ITER XP
```

[1] priority 1st (1st & 2nd) priority days assigned Milestone/ITER/ITPA

required

HHFW Experiments – 4 (5) days

- WPI-1:100% non-inductive RF H-mode [1] 1(1.5) days R10-2, IOS-5.2
- WPI-2:HHFW heating at low T_e , I_p [1] 0.5 days [+1 in SFSU] R10-2, IOS-5.2
- WPI-3:HHFW power coupling vs ELMs [1] 1 day R10-2 *ITER
- WPI-6/15:HHFW heating in NB heated plasmas [1] 1 day R10-2, IOS-5.2
- WPI-4:RF heating at divertor/SOL regions [1] 0.5 days R10-2, IOS-5.2
- WPI-17:Clamping of edge rotation by HHFW [2] (0.5) days R10.2, TC-9
- WPI-26:MSE measurements of HHFW-CD [2] 0 days R10.2
- WPI-5:Interaction of HHFW heating with LLD piggyback R10-2, IOS-5.2
- WPI-20:Measure RF wave amplitude with reflectometer piggyback R10.2
- WPI-24:Measure RF density fluctuations with FIReTIP piggyback R10.2
- WPI-27:Study of HHFW generated PDI piggyback R10.2
- XMP:HHFW plasma conditioning (XMP-26)
- XMP:RF power limiting mechanisms in HHFW antenna

*ITER = Possible ITER XP

[1] priority 1st (1st & 2nd) priority days assigned

Milestone/ITER/ITPA

