MAST Results review

Presented by D. Gates At the NSTX Physics Meeting 9/23/02

Meeting Format

• Group leaders make presentations

- Brian Lloyd
- Howard Wilson
- Martin Valovic
- Paddy Carolan
- John Storrs
- Geoff Cunningham
- Vladimir Schevchenko
- Glen Counsell
- Rob Akers
- Mikhail Gryaznevich (others)
- Alan Sykes

Intro/Overview ST Design Concepts Transport Experiments Profile Diagnostics/ITB regime Control Software Development Plasma Control EBW Edge/Divertor Physics Fast Particle Physics MHD/Scenario Development Project Development

ST Design concepts (H. Wilson)

•CTF

 $-\kappa \sim 2.5, \beta_{\rm N} < 3?$

•Q = 10 burning plasma experiment - $\kappa \sim 3$, $\beta_N \sim 3.9$, A ~ 1.5

•ST Reactor

 $-\kappa \sim 3.2, \beta_{\rm N} \sim 8.2, {\rm A} \sim 1.4$

H-mode scalings (M. Valovic)

- H-mode confinement scaling agrees with MAST data fast particle energy not yet removed
- Helium transport studies with Helium doped neutral beams no $\tau *_{He}$ yet to be analyzed
- H-mode threshold $\sim x1.5$ ITER scaling
- Pellet studies underway studies underway
- Density achieved peaking with pellets,
 - $1.1*n_{\text{Greenwald}}, I_p = 600 \text{kA}$
 - Multi-pellet injection in next year

Confinement (P. Carolan)

- CDND,LSN,USN comparison (H. Meyer)
 - No single null H-mode
 - Lowest threshold in true DND
- Claims observation of ITB
 - 3.2 keV peak central temperature,
 - $n_e \sim 2.0 \times 10^{19} \text{m}^{-3}$
 - correlates with region of high velocity shear
- Data from 200 channel Z_{eff} array (VB)
- Showed profile data from CXRS and multi-pulse Thomson Scattering also 300pt single pulse

Plasma control development (J. Storrs)

- Have tested digital system (coil current control)
- Feb. 2003 Routine digital plasma control.
- Apr. 2003: Integrate MAST central (EPICS equivalent) with PCS. Continue algorithm development, including basic boundary reconstruction (rtEFIT later 2004).

Plasma control (G. Cunningham)

- Optimize vertical position control
 - Use Mirnov coils away from metal to measure plasma vertical motion. Avoid phase lag
 - No passive plates!
- $l_i \sim 0.6-0.8$ with preheat and current ramp

EBW (V. Shevchenko)

- Tried low density ECH at 60GHz failed. Blamed on large diffraction and outboard radial resonance position.
- Have seen enhanced ~100% EBW emission with angled antenna. Angle at which cut-offs of the O-mode and the X-mode are at the same density (B. Lloyd).
- Have 3 mirror launcher with angular control. Installed. Ready for deployment. O-X-B mode conversion scheme.
 - Focuses Focal length infinite (parabolic mirror)
 - Poloidal range of +/- 15°, toroidal +/- 25°, 0.5° accuracy
 - Also useful for breakdown.
- Power supply limitations only 1 NBI source during EBW.
- Find a degradation of EBW emission during ELM free H-mode. Due to edge pressure driven currents changing cutoff profiles?
- Have built LH antenna as a diagnostic for EBW absorption. Frequency chosen to match X-B mode conversion at the Upper Hybrid resonance.

Boundary Physics (G. Counsell)

- ELM energy loss analysis $\delta W_{ELM} \sim 1 \text{kJ}$
- All MAST ELMs are type III, losses are convective. $\delta W \sim \delta n_e^* T_e$
- Measures energy propagation delay.
- $T_i/T_e \sim 4$ in edge (Argument T_i elevated due to ion orbit loss, T_e cooled by convection) See below.
- Uses Langmuir probes to account for 100% of power in the SOL in L-mode. 50% in H-mode.
- Detailed divertor ratio measurements (inner/outer).
- SOL broadening by divertor biasing. 80V alternating divertor plate bias.
- 30cm sweep of the divertor strikepoint due to ohmic leakage flux. Biasing shifts strike point position
- SOL radiation and divertor detachment. (are these heated or Ohmic?) Observe "detachment". Are there impurities?
- SOL width measurements SOL widens with increasing density and q95.

Fast Particles (R. Akers)

- Neutral beam current drive experiments
 - counter current drive campaign
 - matching co campaign
- Co-counter-Ohmic comparison shows clear loop voltage difference and consistent pulse length variation. Almost no T_e variation. 1 1.8MW.
- Lose half the counter beam ions... low currentWorking on TRANSP (has made progress with data preprocessing)
- LOCUST Full fast ion code, wants to benchmark it.
- LOCUST can do NPA spectra!

MHD (M. Gryaznevich)

- M. Hole ideal stability
 - MAST below no-wall limit
 - Uses EFIT shape with TS and fixed $T_i/T_e = 1.2$ and $n_i = 0.8n_e$.
 - Suggests best regime was H-mode early.
 - States that the magnetics only EFITs unreliable. Denies knowledge of β
 - Shows $\beta_t \sim 21\%$ with TF ramp down ($I_p = 1.2$ MA)
 - Claims β_N *H of 10 (optimistic).

MHD (cont.)

- Richard Buttery NTMs
 - No new results
- Lynton Appel TAEs
 - TAEs observed
 - Adding new high frequency Mirnovs.
 - Only 1/100 of co-injected shots have high frequency modes.
 - Counter injection gives more active beam mode activity.
 - See 400kHz TAEs.

MHD (cont.)

- M. Gryaznevich B_v ramp-up
 Vertical field ramp can drive current
- Path to high β
 - Raise pressure at low field

MAST development plan (A. Sykes)

- EBW Heating, ionization, I_p ramp-up
- New center stack 37% more flux, adding gas puff near top to replace midplane puffer
- New TF 90kA (was 85)
- New divertor Full coverage on bottom. Imbrocated (sloped) tiles
- Higher kappa no plan mentioned
- Higher NBI -
 - Next few months ~4MW for 400ms (was 2.9 fro 300ms)
 - 2004 5MW, 5s
- New PF config (more PF current) up down pairs are in series...
- Inboard pellet launch in the plan???
- Error field correction coils under discussion
- Considering methods for making SND... more PF PS mods

Collaborations

- DND vs. SND threshold studies (H. Meyer)
- HFS vs. LFS fuelling comparisons (A. Field)
- Co- counter NBI CD studies (R. Akers)
- Hi resolution Z_{eff} measurement (A. Patel)
- Tearing modes and IREs (R. Buttery)
- With wall vs. no β -limit studies (M. Gryaznevich)
- High voltage low voltage beam comparisons ???