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Motivation

® A longstanding conjecture is that anomalous transport in tokamaks is
caused by some type of turbulence.

® Two types of instabilities are usually considered: the ion temperature
gradient (ITG) and the trapped electron (TEM) modes, characterized by
perpendicular wavelengths of the order of p;, and the electron temperature
gradient (ETG) mode with perpendicular wavelengths of the order of p. .
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® During the past two decades, our understanding of plasma transport
has improved — but not enough for a comprehensive picture of energy
transport in tokamaks.

. INATIONAL  SPHERICAL
Prince ton Plasma TORUS EXPERMINT

Physics Laboratory



!

Different view from the top

From J. Marburger, NRC BPA Committee, Nov. 18, 2002:

“It is fair to say that fusion research today is proceeding with
unprecedented theoretical and experimental confidence”

® This is contradicted by our incomplete understanding of many fundamental
processes, including the very topic of this presentation.

“The ability to predict plasma parameters in realistic simulations,
and then test them in detail in actual devices, has changed the
character of the entire field substantially”

® There are no simulations capable of predicting plasma behavior from first
principles. Before predicting the future, we must check experimentally all
hidden assumptions and fudge factors.

Only sensible research program for the study of plasma transport

Develop numerical

codes capable of
reproducing turbulence
observations

Experimental
observations of
plasma turbulence

Use codes for

Compare results with
transport simulations

observed transport
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lon vs. electron transport

® Transport of ion energy seems to be controlled by turbulent fluctuations with
k.pi<1 (ITG). Best evidence from TFTR experiments with reversed shear
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Xe>>XjIn both NBl and HHFW heated NSTX plasmas
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® This is not surprising since
electron transport has
been anomalous and
worse than ion transport
from the very beginning of
fokamaks
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X 10s ® Recent numerical calculations (Bourdelle et al.)

indicate that in NSTX, while instabilities with k. p;

<1 are either absent or suppressed by an ExB
velocity shear, those with with k,p;>>1 are

unstable over most of the plasma cross section.
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0.51 Is ETG the cause of anomalous electron
transport in NSTX?
% This is the question!
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Pros & Cons

Pro: In both ASDEX and ToreSupra, T_-profiles seem to be limited by a
critical gradient length. This suggests that ETG could ply an important
role in electron transport.

Con: No such phenomenon was observed in NSTX
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Con: Assuming complete isomorphism between | TG and ETG, we find that
Xs/x; ~ (my/ m;)?~1/60 for the electrostatic component of the induced
transport . The opposite is true for the magnetic component, but some
numerical simulations indicate that the latter is negligible — at least for
conventional tokamaks (Li & Kishimoto, and Labit & Ottaviani).

Pro: Numerical simulations (Jenko & Dorland) indicate the possible formation of

Streamers (i.e., structures with long radial correlation lengths) which could
enhance x, .

Con: In TFTR, electron transport of ERS-plasmas deteriorated is spite of the
P P P Lbenef:c:a/ effects of reversed shear on the stability of ETG. NSTY
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E TG fluctuations in NSTX

® The primary goal of this proposal is a direct experimental verification of the
importance of ETG turbulence for the transport of electron energy in NSTX.

® The wave number range of ETG
fluctuations is inferred from of the
observed scale of ITG turbulence.

® Coherent scattering of electromagnetic
waves is the only feasible method for
detection of high-k fluctuations.
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R[m]

® Coherent scattering of electromagnetic waves was used for the first detection
of turbulent fluctuations in tokamaks.

® Existing data are inconclusive about the existence of ETG turbulence in
tokamaks.
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Some observations of high-k fluctuations in low-field tokamaks
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Detection of ETG fluctuations with coherent scattering of em waves

® Coherent scattering of e.m. waves is characterized by the cross
section o=(e2/mc?)? S(k,w), where S(k,w) is the spectral
density of fluctuations

< 5/‘)2 >=

1
S(k, w)dkdw >
(27 )4 f ks Kk
® Frequencies and wave vectors must satisfy energy [v=w¢-w; ] /9 k-—>\
!

and momentum [k=ks-k;] conservation. Bragg Condition

® The wave number resolution is determined by the size of

the probing beam. For a Gaussian beam with an amplitude
A=exp(-r¢/a?), the resolution is 6k~2/a.

® For isotropic fluctuations, the spatial resolution is determined by
the common region of radiation patterns of launching and
receiving antennae. Example:
or=4ka/k=48 cm
for k=10 cm-1, k=60 cm-1' and a=2 cm. This is not adequate for
our goal!

® Spatial resolution can be substantially better in the case of
anisotropic fluctuations.
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Anisotropic turbulence

® Since k.>>k~1/qR, the turbulence of interest is not isotropic.
Consequently, since the direction of B is not constant, not K
every point of the common region between launching and
receiving beams satisfies the Bragg condition

1,2
ks ks _ = cos(a)
k.2
/
2 . 2 . D )
= C0S“60 + sin“fcos(6g) = 1- 2sin“(6p/ 2) sin“6 >
a? = 4sin?(8¢/ 2)sin?0 = 4sin®(5¢/ 2)k/k;
Beam profile Beam profile Instrumental
in real space in Fourier space function
exp(—rf / az) exp(—rcfez2 /4) exp[-(sin(égp/ 2)ka)2]

® Spatial resolution improves with fluctuation wave number (k), beam
radius (a) and change in direction of magnetic lines (dg(r)/dr).
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Perpendicular propagation

® For quasi-perpendicular wave propagation (i.e., for Bi—»
detection of poloidal fluctuations), do(r)/dr increases
with magnetic shear — large in NSTX.

® Examples of instrumental functions for B=0.45 T,
[=800 kA and a=3 cm.

k=5 cm-1 k=10 cm-1 k=20 cm-1
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Scattering geometry for detection of poloidal fluctuations
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Oblique propagation

® For good radial resolutions, another option is using a probing beam propagating
obliquely to the magnetic field. In this case, the instrumental resolution improves
because of the toroidal curvature of magnetic field lines.

Scattering geometry for radial fluctuations

K ki
kr ks
\
k,/ K ® Bragg condition: at points of
¥k observation, the bisector of k;
Ri and kg is tangent to the circle
of radius R;/cos(6/2).
0

equatorial plane

® Spread in radial locations: AR = R;[(1- (k™ /2k;)2)"V2 1]

Example: for R;=1.3m, k; =60 cm™ and k™ =30 cm’’
AR;=4.25 cm

to which we must add the radius of probing beam (~2 cm) to get the
radial resolution.
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Scattering geometry for detection of radial fluctuations
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NSTX Implementation
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k. =0cm™
k,=-10 cm™
k., =-20 cm™’
1.37

Bay-K

Bay-H

k,=20cm™
k. =10 cm™

k. =0cm’
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NSTX Implementation

1070 um scattering
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Alternative port for higher k
measurements (20-40 cm1)
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Launching from Bay-H

FIR window

Interior Armor Baffles

\ PPPL @ns1x

Princeton Plasma TORUS EXPERIMENT
Physics Laboratory



Launching from Bay-H

Neutral Beam Armor Slot At Bay-H
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Receiving at Bay-K
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Minimum detectable fluctuation amplitude
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4 2
Pi 4 (UI n2 kJ_a
n=2x10"3 cm3, <on®>/n°=10"8, k, =20 cm™,

P =0.1W, w;/2r=280x10° Hz,

L=5cm, a=3cm 11

With total transmission losses of 50%, the signal power is 5x10-12 W — Jarger

than the estimated NEP of 2x10-13 W/,

® Conclusion: the proposed method will be capable of detecting fluctuations much
smaller than those expected from the ETG mode (dn/n~1/k | L;~1 0-3).
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Conclusions

® Recent experiments on Tore Supra and ASDEX Upgrade seem to suggest
that the ETG mode plays an important role in transport of electron thermal
energy — the main loss of energy in NSTX.

® The primary goal of this proposal is a direct experimental verification of the
importance of ETG driven turbulence for the transport of electron energy in
NSTX plasmas.

® Turbulent fluctuations with a sub-p; scale — such as those driven by the ETG
mode — will be detected with coherent scattering of 1-mm electromagnetic
waves.

® A unique feature of the proposed method is the ability to measure with high
sensitivity and spatial resolution both the poloidal and the radial spectrum of
turbulence.

® The proposed system will be capable of detecting fluctuations with the scale of
p; as well. This will make possible a direct comparison of the observed ETG

turbulence — if any — with those turbulent phenomena that are known to
dominate the transport of ion enerqgy in tokamaks.

® |nitial operation will be limited to the measurement of the radial spectrum of
fluctuations.
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