Full-Wave modeling of RF waves propagation and absorption in the presence of beam ions

R. Dumont (Association Euratom-CEA - France)

C.K. Phillips⁽¹⁾, A. Pletzer⁽¹⁾, D.N. Smithe⁽²⁾

(1) Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton NJ 08543, USA(2) Mission Research Corporation, Newington VA 22122, USA

Initiative SciDAC-RF http://www.ornl.gov/fed/scidacrf/

Outline

1) Theoretical introduction

- Why Full-Wave modeling ?
- All-orders spectral description
- How to handle non-Maxwellian distribution functions ?

2) The Mets code

- Main features
- Beam ions modeling: slowing-down distribution
- Equivalent Maxwellian

3) Applications

- Mode converted IBW with Tritium NBI in TFTR
- HHFW with NBI Deuterium beam ions NSTX

4) Conclusions / plans

Plasma-Wave interaction modeling

- Wave Equation: $\nabla \times \nabla \times \mathbf{E} \frac{\omega^2}{c^2} \left(\mathbf{E} + \frac{i}{\omega \epsilon_0} \mathbf{J}_p \right) = i \omega \mu_0 \mathbf{J}_s$
- Plasma current: $\mathbf{J}_p(\mathbf{r}) = \int d\mathbf{r}' \overline{\overline{\sigma}}(\mathbf{r}, \mathbf{r}') \cdot \mathbf{E}(r')$

Source Current

Dielectric tensor

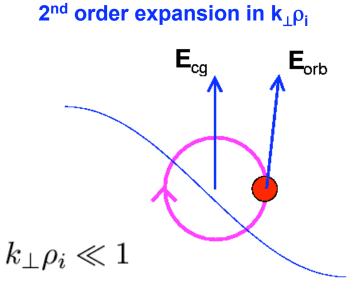
Integral wave equation (inhomogeneous plasma)

$$\nabla \times \nabla \times \mathbf{E} - \frac{\omega^2}{c^2} \int d^3 \mathbf{k} \exp(i\mathbf{k} \cdot \mathbf{r}) \mathbf{\bar{K}}(\mathbf{r}, \mathbf{k}) \cdot \mathbf{E}(\mathbf{k}) = i\omega\mu_0 \mathbf{J}_s$$

- Weakly inhomogeneous plasma: λ << L_B
 - Eikonal equation: splitting of fast-varying phase and slow-varying amplitude
 - Dispersion relation D(r,k)=0 and ray-tracing
- IC range of frequency:
 - λ # L_B
 - Cut-offs, resonances, inter-modes interactions

→ Needs for a full-wave analysis

What is an all-orders description ?



All-orders description \mathbf{E}_{cg}

Perpendicular locality

Perpendicular non-locality

All-orders description required:

- Reliable modeling of IBW
- Description of the interaction between wave and fast ions
- Simulation of heating at harmonics n > 2

• Drawbacks:

- Dielectric tensor and absorption are difficult to compute
- · Interpretation of results often less straightforward
- Dense matrices: computation time and storage requirements increased

Non-thermal distributions functions

• Dielectric kernel in the local magnetic frame

$$\overline{\overline{\Theta}}_{n}(x,\mathbf{k}_{1},\mathbf{k}_{2}) \equiv \int_{0}^{\infty} d\tau \int_{0}^{\infty} dv_{\parallel} e^{\left(i(\omega\tau - n\theta(\tau) - k_{\parallel,1}v_{\parallel}\tau)\right)} \int_{-\infty}^{\infty} dv_{\perp} \ \overline{\mathbf{w}}(x,\mathbf{v},\mathbf{k}_{1},\mathbf{k}_{2})$$

→ Gyro-averaged energy kernel W

Dielectric kernel K: Electromagnetic fields

- → Energy quantities **P,T**, W_{abs}: **Local absorption**
- General expression for **w** (arbitrary distribution function)

$$\vec{\mathbf{w}} \equiv \begin{bmatrix} \frac{v_{\perp}}{\sqrt{2}} J_{n+1}(\xi_2) \\ \frac{v_{\perp}}{\sqrt{2}} J_{n-1}(\xi_2) \\ v_{\parallel} J_n(\xi_2) \end{bmatrix} \begin{bmatrix} \hat{\underline{L}} f_0 \\ \sqrt{2} \\ \sqrt{2} \end{bmatrix} \frac{\hat{\underline{L}} f_0 }{\sqrt{2}} J_{n-1}(\xi_1) \quad \hat{\underline{L}}_n f_0 J_n(\xi_1) \\ \uparrow \\ \xi_{1,2} = k_{\perp 1,2} v_{\perp} / \Omega_0$$

 \rightarrow f₀ arbitrary: numerical computation of velocity integrals

The Mets code

• Physics features

- All-orders 1D full wave code
- No FLR approximation
- Finite magnetic field gradient effects considered
- Handles arbitrary non-Maxwellian distribution functions

• One code, two modes

Maxwellian METS	 Analytical expression for the dielectric tensor 1/L_{//} ≠ 0 Computation time: τ# 1mn
Non-Maxwellian METS	 Velocity integrals performed numerically 1/L_{//} = 0 (No magnetic field gradient effects) Computation time: τ# 1h

• Two goals

- Tool for the study of ICRF scenarios
- Testbed for the implementation of non-Maxwellian distribution capabilities in 2D Full-Wave codes: TORIC, AORSA (SciDAC initiative)

Slowing-down distribution for beam ions

$$[M. \text{ Cox and D.F.H Start, Nucl. Fusion, 24 (1984) 399]}$$

$$f(u, \mu) = \sum_{l=0}^{\infty} a_l(u) P_l(\mu), \quad u \text{ is normalized to } E_b^{1/2}$$
with Legendre polynomials Beam angular distribution
$$a_l(u) \equiv (2l+1) \frac{\tau_s}{4\pi(1+u_c^3)} \cdot \frac{K_l}{K_0} \cdot S \cdot A_l(u), \quad K_l \equiv \int_{-1}^{1} d\mu P_l(\mu) K(\mu)$$

$$f(u) = (2l+1) \frac{\tau_s}{4\pi(1+u_c^3)} \cdot \frac{K_l}{K_0} \cdot S \cdot A_l(u), \quad K_l \equiv \int_{-1}^{1} d\mu P_l(\mu) K(\mu)$$
Equivalent maxwellian
$$\int_{0}^{v_b} dv \frac{v^2}{2} f_b(v) = \int_{0}^{\infty} dv \frac{v^2}{2} f_{max}(v)$$

$$\longrightarrow T_{eq} = \frac{2m_b}{\ln(1+(u_m^3/u_c^3))} \int_{0}^{v_m} dv \frac{v^4}{v^3+v_c^3}$$

Mode conversion with NBI on TFTR

D-T supershot on TFTR:

 $B_0=4.7 \text{ T}, n_{e0}=4.7 \text{ 10}^{19} \text{ m}^{-3}, T_{e0}=6.8 \text{ keV}$

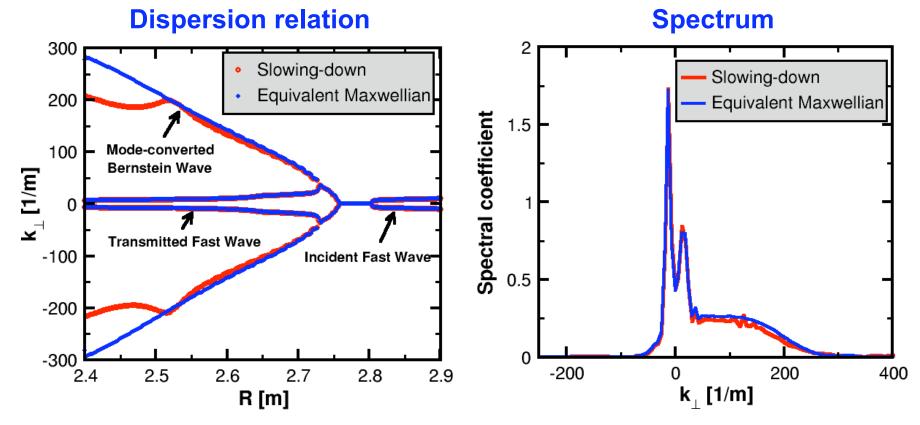
D,T, H and ⁶C with η_T =42 %, T_{i0}=31 keV

 f_{FW} =30 MHz with $k_{//}$ ant=7 m⁻¹

Beam Tritium Ions: isotropic slowing-down distribution

Mode-conversion with NBI in TFTR: propagation

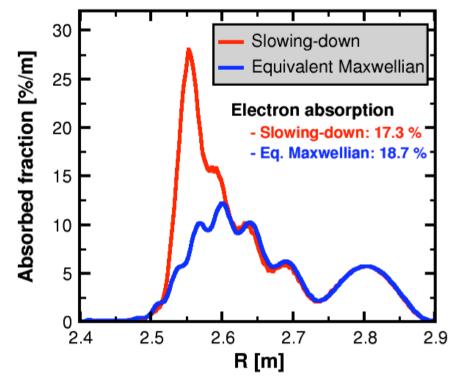
T-NBI ions: isotropic slowing-down distribution



Modification of the Mode-Converted IBW branch for wavenumbers k₁ > 200m⁻¹.

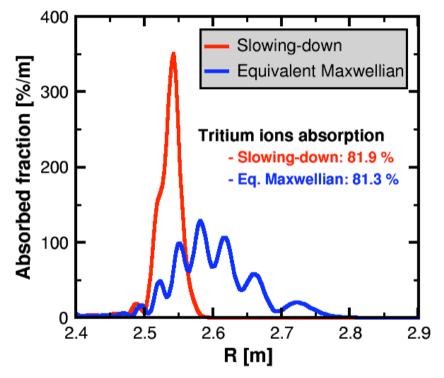
Mode conversion with NBI in TFTR: Absorption

Electron absorption



Electron absorption exhibit roughly similar shapes for both cases except in the absorption region

Tritium beam ions absorption

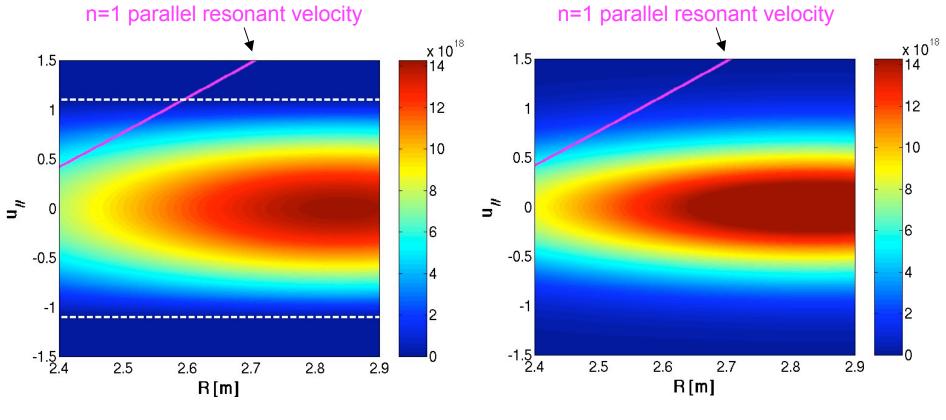


Energetic ions absorption appears to be much more peaked with the slowing-down distribution

Net absorption similar for both cases, but profiles differ strongly

Distribution function features

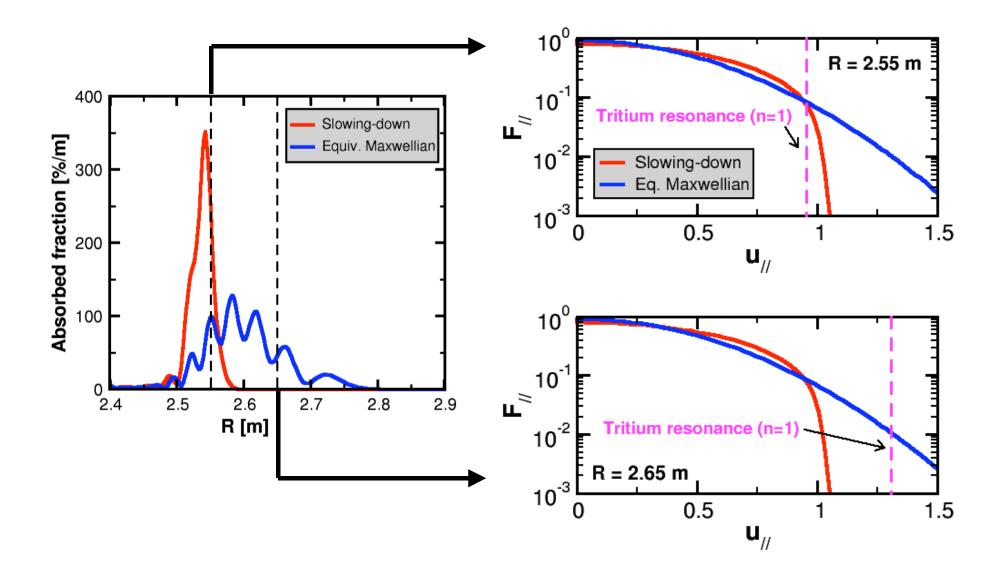
Parallel distribution function: $F(u_{\parallel}) \equiv 2\pi \int_{-\infty}^{\infty} du_{\perp} u_{\perp} f(u_{\parallel}, u_{\perp})$



Slowing-down distribution

Equivalent Maxwellian

Distribution function features (2)



Why does it mostly affect the absorption ?

Local absorption in an all-orders description

$$W_{abs} = \dots \operatorname{Im}\left(e^{i(\mathbf{k}_1 - \mathbf{k}_2) \cdot \mathbf{r}} \mathbf{E}^*(\mathbf{k}_2) \cdot \overline{\mathbf{W}}^{=}(\mathbf{r}, \mathbf{k}_1, \mathbf{k}_2) \cdot \mathbf{E}(\mathbf{k}_1)\right)$$

• Assuming perpendicular locality: $\mathbf{k}_1 = \mathbf{k}_2 = \mathbf{k}$: $W_{abs} = \dots \mathbf{E}^*(\mathbf{k}) \cdot \overset{=}{\mathbf{W}}_{\mathbf{k}}^{(a)} \cdot \mathbf{E}(\mathbf{k})$

The energy kernel appears as

Anti-hermitian part

$$\bar{\bar{\mathbf{W}}} \propto \int_{-\infty}^{\infty} du_{\parallel} \frac{1}{u_{\parallel} - u_{\parallel, res}} \int_{0}^{\infty} du_{\perp} \mathcal{F}\left(\frac{\partial f_{0}}{\partial u_{\parallel}}, \frac{\partial f_{0}}{\partial u_{\perp}}, \dots\right)$$

And can be treated according to Plemelj formula

$$= \mathbf{\overline{W}} \propto \mathcal{P}\left(\int d\mathbf{u} \,\mathcal{F}\right) - i\pi \int du_{\perp} \,\mathcal{F}\left(\frac{\partial f_0}{\partial u_{\parallel}}, \frac{\partial f_0}{\partial u_{\perp}}\right) \bigg|_{u_{\parallel} = u_{\parallel, res}}$$

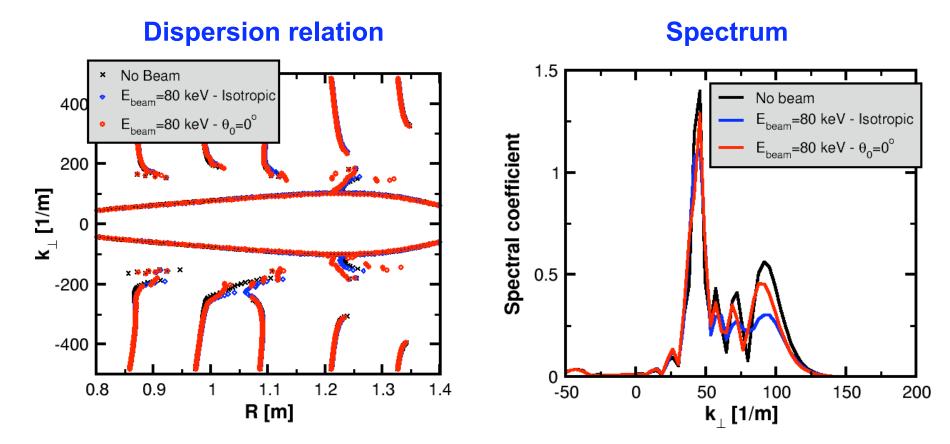
The absorption is sensitive to the local values of the distribution function velocity gradients at $u_{//}=u_{//,res}$

High Harmonic Fast Wave Electron Heating combined with NBI heating in NSTX

NSTX HHFW shot: $B_0=0.45$ T, $n_{e0}=2.75 \times 10^{19}$ m⁻³, $T_{e0}=1$ keV D, H and ⁶C with $T_{i0}=1$ keV $f_{FW}=30$ MHz, $k_{//}^{ant}=14$ m⁻¹ D-NBI ions: isotropic / anisotropic slowing-down

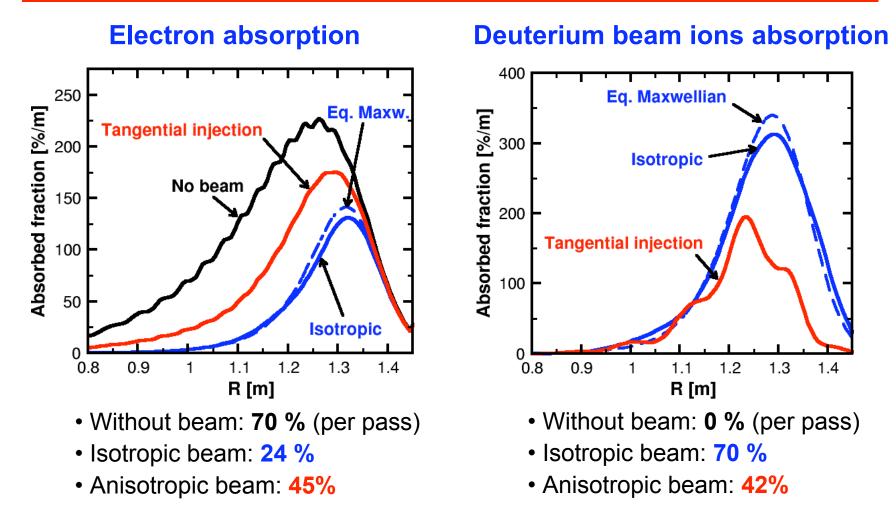
HHFW + NBI on NSTX: Propagation

D-NBI ions: isotropic/anisotropic slowing-down distribution



No major changes observed in dispersion relation / spectrum

Wave power absorption by fast ions

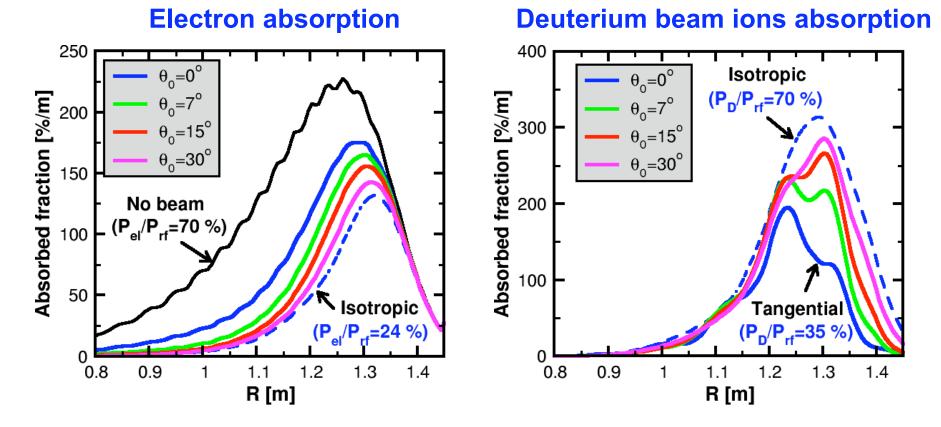


- Isotropic slowing down and equivalent Maxwellian in agreement

- Less fast ion absorption in the case of tangential injection

Strong effect of the beam injection angle

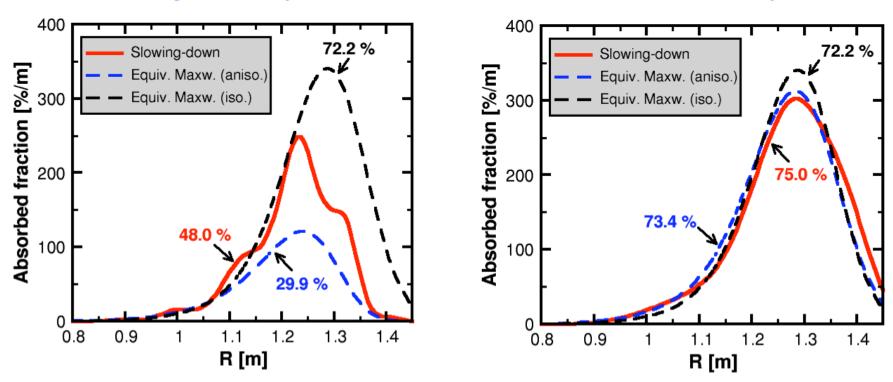
Beam angle (θ_0) varied between 0 and 30°



Effect sensitive to the beam pitch-angle distribution, especially for injection angles below 30°.

Anisotropic equivalent Maxwellian

Tangential injection

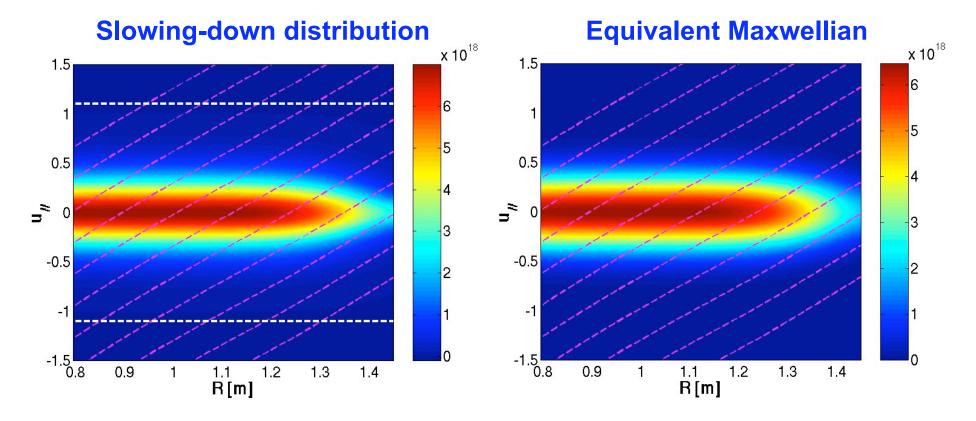


Perpendicular injection

The detailed shape of the distribution function in the parallel velocity direction is fundamental for the absorption

Why does the anisotropic equivalent Maxwellian work for large angles ?

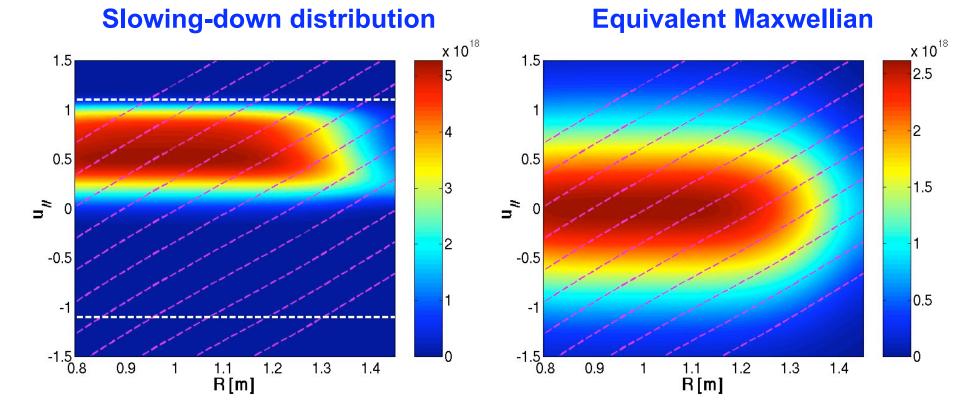
Case of a perpendicular injection (θ_0 =90°)



With two temperatures, the equivalent Maxwellian gives a realistic picture of the real distribution function

Why does it fail to describe the absorption for small injection angle ?

Case of a tangential injection ($\theta_0=0^\circ$)



It is not possible to get a good picture of the distribution function for small angles, even with anistropic velocities

Conclusions / Plans

- Non-Maxwellian distributions implemented in Mets-1D
 - Numerical treatment of the velocity integrals
 - Thoroughly benchmarked against analytical results
- Study of ICRF scenarios
 - Mode conversion with Tritium beam on TFTR
 - HHFW with Deuterium beams on NSTX
- Inadequacy of the equivalent Maxwellian
 - Presence of ions faster than the beam injection velocity
 - Anisotropic distribution effects not correctly described
- Short-term developments
 - Improvement of the numerical treatment of velocity integrals
 - Alternate function basis for speeding up the computation
- The next big thing: non-Maxwellian + 2D effects
 - AORSA-2D: Non-Maxwellian Mets routines just implemented
 - TORIC: Towards a Full-Wave modeling of LHCD