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NPA measures beam ion signal depletion at 40 — 80keV
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S.S.Medley et.al. NF'04 submitted
After H-mode transition m= 4/n = 2 mode is observed
Why NPA signal is depleted at those energies?



Motivation

NBI ion possible loss/redistribution raise question on
e first wall heat flux,
e heating efficiency.

e \What about current drive?

— ASDEX shows that at high Pypg| off-axis injected beam ions are
flattened with the diffusivity of thermal plasma (Glnter, EPS2004)



Motivation

NBI ion possible loss/redistribution raise question on
e first wall heat flux,
e heating efficiency.

e \What about current drive?

— ASDEX shows that at high Pypg| off-axis injected beam ions are
flattened with the diffusivity of thermal plasma (Gunter, EPS2004)

— Can ITER have steady state current drive? What can affect it?



TRANSP slowing down beam ion distribution vs NPA signal
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TRANSP slowing down beam ion distribution vs NPA signal
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Why beam ions do not fill the gap and where do they go?

In this talk:
(1) what is the confinement time of beam ions

(2) can m= 4/n = 2 perturbation explain fast ion losses?



(1) Losses effect fast ion distribution function
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(1) Losses effect fast ion distribution function
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Kinetic equation in steady state (Cordey, Goldston, Mikkelsen, '81):

T Sev2 oV
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Solution depends on the loss to drag time ratio

At finite T g WeE Obtain
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and f ~ 1/ (V¥ +V2) if Tjoss — 0.



Solution depends on the loss to drag time ratio
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Solution depends on the loss to drag time ratio
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(1) What is the mechanism for “losses”/redistribution

Numerical study includes

1. plasma zero frequency m =
4 /n = 2 perturbation,

2. amplitude on the order of
dB/B ~ 104,
3. strong toroidal sheared rotation,

4. pitch angle for NPA sight line X =
V| /V = 1.5125 — 0.629Rx[m,
X =0.9 = R =0.97m,
X =0.6 = Ry =1.45m

5. realistic equilibrium and ORBIT
code



(1) What is the mechanism for “losses”/redistribution

Numerical study includes

1.

plasma zero frequency m = -
4 /n = 2 perturbation,

amplitude on the order of -
dB/B ~ 104, |
strong toroidal sheared rotation,
pitch angle for NPA sight line X = -
Vj/vV=15125—0.629R[m],

X =0.9 = R =0.97m,
X =0.6 = Ry =1.45m

realistic equilibrium and ORBIT ®#°-- 8888888888883 ¢
code 0 0

mode structure consistent with ideal MHD 0B = [1 x aB
o~ (1—ng/m)(r/rg)Msin(nd —mB), if r < rg



Beam ion orbits without perturbations

Example trapped ion orbit at
E = 70keV and X = 0.55.

Electric field in NSTX -
central potential 3.8keV, cen-

tral rotation ¢ = 8-10°sec™1 -

1. changes particle orbits

2. effects precession fre-
quency

3. shifts mode frequency
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Islands in the real space (R-Z) with perturbatio%

w/out electric field with electric field
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islands in Py — (00— Pt) (N (r/a)? — (w— ¢t)) space

w/out electric field with electric field
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Wave-particle approximate resonance condition

Q)—O.)ExB—(k”—I—UQR)V” =0,1==+1,2,... (3)

Frequency effect

e If =0 and there is no electric field, resonance is kj +1/gR=0 - in
real space

e If w+# 0 and/or wg«p # 0 resonance involves phase space.
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Frequency effect

e If =0 and there is no electric field, resonance is kj +1/gR=0 - in
real space

e If w+# 0 and/or wg«p # 0 resonance involves phase space.

Orbit width effect

1. In zero orbit width case, | = 1 due to toroidal drift velocity cos 6-like
modulation.

2. At large orbit width, only parts of particle orbit interact with the mode,
= |I| > 1 appear.



Wave-particle approximate resonance condition

O)—O.)ExB—(k”—I—UC]R)V” =0,1==+1,2,... (3)

Frequency effect

e If =0 and there is no electric field, resonance is kj +1/gR=0 - in
real space

e If w+# 0 and/or wg«p # 0 resonance involves phase space.

Orbit width effect

1. In zero orbit width case, | = 1 due to toroidal drift velocity cos 6-like
modulation.

2. At large orbit width, only parts of particle orbit interact with the mode,
= |I| > 1 appear.

Since |W— WexB| K ‘V” ‘ /gR the resonance is possible if ] kjaR+ I‘ <1
at given magnetic surface.

Thus the resonance is selective (narrow in |) for low energies and broad for
high energies.



Islands in Py — (w— ¢t) for different energies

E = 0.1keV E = 70keV
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Numerical results for injected ions at Eqg = 40 and 80kev

Allow for ion thermalization until E = Ep/2:
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Numerical results for injected ions at Eqg = 40 and 80kev

Allow for ion thermalization until E = Ep/2:
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Particles are effected above 40keV . Shows sensitivity to resonant k||



Are there any losses due to MHD
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At expected amplitudes 0g =2 —3 x 1074 (3B/B) ~ 1073, m=4/n=2
mode can induce losses comparable to prompt losses.



Summary and conclusions

MHD activity observed in NSTX H-mode plasma is shown to be
responsible for the NPA signal loss.

e Beam ion redistribution is energy selective affecting ions at
E =50 — 80keV.

e Characteristic loss/redistribution time is Tjggs ~ 4MSeC.



