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NPA measures beam ion signal depletion at 40 � 80keV

S.S.Medley et.al. NF’04 submitted

After H-mode transition m � 4 � n � 2 mode is observed

Why NPA signal is depleted at those energies?



Motivation

NBI ion possible loss/redistribution raise question on

� first wall heat flux,

� heating efficiency.

� What about current drive?

– ASDEX shows that at high PNBI off-axis injected beam ions are
flattened with the diffusivity of thermal plasma (Günter, EPS2004)

– Can ITER have steady state current drive? What can affect it?
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In this talk:

(1) what is the confinement time of beam ions

(2) can m 4 n 2 perturbation explain fast ion losses?
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(I) Losses effect fast ion distribution function
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Solution depends on the loss to drag time ratio

At finite τloss we obtain
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Implies that τloss τse 15, i.e. τloss 4msec.
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(II) What is the mechanism for “losses”/redistribution

Numerical study includes

1. plasma zero frequency m �

4 � n � 2 perturbation,

2. amplitude on the order of
δB � B� 10� 4,

3. strong toroidal sheared rotation,

4. pitch angle for NPA sight line χ�
v � � v � 1 � 5125� 0 � 629Rcx � m � ,
χ � 0 � 9 � Rcx � 0 � 97m,
χ � 0 � 6 � Rcx � 1 � 45m

5. realistic equilibrium and ORBIT
code

RR
0 0

+a

mode structure consistent with ideal MHD δB ∇ αB

α 1 nq m r rs
m sin nϕ mθ if r rs
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Beam ion orbits without perturbations

Example trapped ion orbit at
E � 70keV and χ � 0 � 55.

Electric field in NSTX -
central potential 3 � 8keV , cen-
tral rotation ϕ̇ � 8� 105sec� 1 -

1. changes particle orbits

2. effects precession fre-
quency

3. shifts mode frequency



Islands in the real space (R-Z) with perturbations

w/out electric field with electric field

E � 0 � 1keV and χ � 1



Islands in Pϕ � � ω � ϕt � � � r � a � 2 � � ω � ϕt � space

w/out electric field with electric field



Wave-particle approximate resonance condition

ω� ωE� B� � k � � l � qR � v � � 0� l � � 1� 2� � � � (3)

Frequency effect

� If ω � 0 and there is no electric field, resonance is k � � l � qR � 0 - in
real space

� If ω �� 0 and/or ωE� B �� 0 resonance involves phase space.

Orbit width effect

1. In zero orbit width case, l 1 due to toroidal drift velocity cosθ-like
modulation.

2. At large orbit width, only parts of particle orbit interact with the mode,
l 1 appear.

Since ω ωE B v qR the resonance is possible if k qR l 1
at given magnetic surface.
Thus the resonance is selective (narrow in l) for low energies and broad for
high energies.
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Islands in Pϕ � � ω � ϕt � for different energies

E � 0 � 1keV E � 70keV

and χ � 1, α0 � 2� 10� 4

Wide range of Pϕ or r � a is affected.



Numerical results for injected ions at E0& 40 and 80kev

Allow for ion thermalization until E � E0 � 2:
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Shows sensitivity to resonant k
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Are there any losses due to MHD
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mode can induce losses comparable to prompt losses.



Summary and conclusions

MHD activity observed in NSTX H-mode plasma is shown to be
responsible for the NPA signal loss.

� Beam ion redistribution is energy selective affecting ions at
E � 50� 80keV .

� Characteristic loss/redistribution time is τloss ( 4msec.


