Supported by

Resolution of the NSTX Neutron Conundrum - *Circa 2005*

S. S. Medley, D. S. Darrow, and A. L. Roquemore

Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 USA

NSTX Physics Meeting July 11, 2005

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU **ORNL PPPL** PSI **SNL** UC Davis **UC** Irvine UCLA UCSD **U** Maryland **U New Mexico U** Rochester **U** Washington **U** Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U U Tokyo JAERI loffe Inst TRINITI KBSI **KAIST** ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching U** Quebec

NSTX Neutron Diagnostic Suite

Neutron Detector Locations

Neutron diagnostic suite consists of:

 2 fission chambers,

 absolutely calibrated in-vessel with a ²⁵²CF neutron source

- 4 plastic scintillators cross calibrated to the fission chambers

- Plastic scintillation detector (2FG):
 - control room standard
 - fast time response
 - externally biased
 - does not saturate
 - calibration shifts have occurred
- Fission chamber detector (FC):
 - slower time response
 - internally biased
 - does not saturate
 - most stable calibration

The NSTX Neutron Conundrum

- The plastic scintillator neutron measurements have changed over time, occasionally inexplicably.
- Neutron measurements amongst the detectors in the suite do not agree.
- Neutron measurements do not agree with TRANSP-calculated neutron rates.

Comparison of Measured and Calculated Neutron Rates in L-mode Discharges

Fission chamber measurements modestly (~ 8.5%) exceed TRANSP calculations.
2FG scintillator measurements changed drastically over time.

Comparison of Measured and Calculated Neutron Rates in H-mode Discharges

• Fission chamber data are close to TRANSP calculations, in contradiction with NPA energetic ion loss observations.

• 2FG scintillator measurements changed drastically over time.

Comparison of Fission Chamber and 2FG Scintillator Measurements in H-mode Discharges

- The fission chamber and 2FG scintillator measurements have never agreed.
- The 2FG scintillator measurements are stable within selected time periods, but increased by ~ 80% in 2004 relative to pre-2004.

The Scintillator/Fission Chamber Raw Signal Ratios are Independent of Neutron Yield

Comparison of Fission Chamber and 2FG Scintillator Measurements in L-mode Discharges

- The fission chamber and 2FG scintillator measurements have never agreed.
- The 2FG scintillator measurements are stable within selected time periods, but increased by ~ 77% in 2004 relative to pre-2004.

Comparison of Scintillator/Fission Chamber Raw Signal Ratios Over 2002-2004

Large variations in the scintillator/fission chamber signal ratios occurred in time.
The fission chamber is stable, so the scintillator response must have changed.

Scintillator Operating Biases Varied Drastically Over 2002-2004

• The externally applied scintillator bias voltages have been archived since 2002.

• An inexplicable decrease in the 2FG scintillator bias occurred in early 2002.

 The 2FG scintillator bias was increased (intentionally) from ~ 960 volts in 2003 to ~ 1012 volts in 2004.

This implies that the 2FG scintillator photomultiplier gain increased by (1012/960)⁷ ~ 1.52, but the calibration factor was not updated.

- The plastic scintillator neutron measurements have changed over time, occasionally inexplicably.
 due to changes in the bias voltages
- Neutron measurements amongst the detectors in the suite do not agree.
- Neutron measurements do not agree with TRANSP-calculated neutron rates.

A New Procedure was devloped to Cross Calibrate the Scintillators with the Fission Chamber

• Previously, the scintillators were cross calibrated against the fission chambers operated in *pulse-counting* mode. This was faulty because of premature saturation of the pulsecounting mode.

• In the new procedure, cross calibration was performed with the FC1 fission chamber in the *current mode*.

 An additional (perhaps controversial) step was taken by normalizing the fission chamber neutron rate to the TRANSP-calculated rate for MHDquiescent L-mode discharges (where perfect agreement could be expected).

Neutron Re-calibration Details

• The 2FG and ZnS scintillators and the fission chamber now agree for both L-mode and H-mode discharge conditions over the entire 2002-2004 period.

The NSTX Neutron Conundrum

 The plastic scintillator neutron measurements have changed over time, occasionally inexplicably.
 due to changes in the bias voltages

- Neutron measurements amongst the detectors in the suite do not agree.
 - resolved by new cross calibration procedure
- Neutron measurements do not agree with TRANSP-calculated neutron rates.

Neutron Re-calibration Results

- The 2FG scintillator and the fission chamber agree with TRANSP calculations to within ± 1% for L-mode discharges over the entire 2002-2004 period.
- For H-mode discharges, measurements agree and show a neutron deficit of 11.5%

Revised Neutron Calibration Factors

Parameter	Year	FC1 - Fission	2FG	1DE (ZnS)
	(Shot Range)	Chamber	Scintillator	Scintillator
Detector Bias (V)	Early 2002	NA	(1008-960)	(1016)
	(107213-107670)			
	2002	NA	(945 ± 10)	(1017 ±1)
	(107671-109077)			
	2003	NA	(954 ± 4)	(1016 ± 2)
	(109772-110186)			
	2004	NA	(1013 ± 2)	(1005 ± 2)
	(111060-114475)			
	2005	NA	1060	850
	(115674 -)		(1008)	(804)
Calibration Factor	Early 2002	(7.6x10 ¹³)	(5.4±1.4x10 ¹³)	
(n/s/Volt)	(107213-107670)			
	2002	(9.0x10 ¹³)	(8.8±0.5x10 ¹³)	(1.2±0.2x10 ¹³)
	(107671-109077)	8.2±0.1x10 ¹³	12.2±0.70x10 ¹³	1.78±0.09x10 ¹³
		Offset=0.040v	Offset=0.082v	Offset=0.147v
	2003	8.2±0.1x10 ¹³	10.2±0.90x10 ¹³	1.24±0.14x10 ¹³
	(109772-110186)	Offset=0.040v	Offset=0.087v	Offset=0.180v
	2004	8.2±0.1x10 ¹³	6.95±0.72x10 ¹³	1.18±0.72x10 ¹³
	(111060-114475)	Offset=0.040v	Offset=0.069v	Offset=0.063v
	2005	8.2±0.1x10 ¹³	7.23±0.36x10 ¹³	7.61±0.07x10 ¹³
	(115674 -)	Offset=0.040v	Offset=0.063v	Offset=0.095v

- Bracketed quantities are old values.
- The new procedure for correcting the raw neutron waveforms subtracts the voltage offset first: e.g.

- Calibrations errors are maximum variations in the data set. RMS errors are ~ 1/3 of these values.
- Measured/calculated neutron rates for 2005 data with corrected CHERS Z_{eff} will be studied to assess the L-mode normalization step.

^{(\}NEUT_FLUCT_SLW_2FG-0.063)*7.23e13

Measured/Calculated Neutron Rates for a 2004 L-mode Discharge

Measured/Calculated Neutron Rates for a 2004 H-mode Discharge

Conclusions

The plastic scintillator neutron measurements

have changed over time, occasionally inexplicably.

- due to changes in the bias voltages

 Neutron measurements amongst the detectors in the suite do not agree.

- resolved by new cross calibration procedure

Neutron measurements do not agree

with TRANSP-calculated neutron rates.

-agreement enforced in L-mode by normalization

will be further examined for 2005 L-mode plasmas

S. S. Medley, D. S. Darrow and A. L. Roquemore, "Reconciliation of Measured and TRANSP-calculated Neutron Emission Rates in the National Spherical Torus Experiment," PPPL-4080 (June, 2005)