

Physics of integrated high-performance NSTX plasmas

(derived from EPS-2005 talk)

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INFI Johns Hopkins U LANL IINI Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

Jonathan Menard

For the NSTX Team

NSTX Physics Meeting July 25, 2005

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hvoao U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokvo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

NSTX is pursuing the integration of high β and high confinement with fully non-inductive operation

• High beta

- Increased plasma shaping factor
- Rotational stabilization of the resistive wall mode (RWM)

High confinement

- Developing small ELM regimes at high shaping factor
- New MSE data elucidating role of q profile in electron transport

High non-inductive current fraction

- Using NBI + BS to achieve high f_{NI}
- Determining requirements for $f_{NI} \rightarrow 100\%$, stationary J profile

• Plasma startup without solenoid

- Coaxial Helicity Injection

STX

New divertor poloidal field coils have significantly enhanced the plasma shaping capabilities of NSTX

- Highest $\kappa \rightarrow 2.7$ now obtained at highest $\delta \rightarrow 0.8$, $S \equiv q_{95} I_P / a B_T \rightarrow 35$
 - Record stored energy = 430kJ at I_P=1.4MA, β_N =5.3, β_T = 29%, q*=2.3

- Small ELM regime recovered at high κ > 2.5 with new divertor coils
 - Previously observed onset of large ELM-like events when $\kappa > 2.2$

Rotational stabilization of the RWM is key to <u>sustained</u> plasma operation at maximum β in NSTX

- Global MHD modes can lead to rotation damping, β collapse
- Understanding of sustained RWM stabilization needed for ITER-AT

Record discharge pulse-lengths have been achieved by operating with sustained H-mode and high β_N

- H-mode with small ELMS \Rightarrow reduced flux consumption, slow density rise
- $\beta_N > 4$ for $\Delta t > 1s$ at high $\beta_P > 1$ increases bootstrap fraction, lowers V_{LOOP}

ISTX

Mode crashes faster than single-fluid MHD

Counter injection w/ 2-fluid

Ma=-0.3

Rotation damping physics:

- Neoclassical Toroidal Viscosity (NTV) from mode δB good candidate to explain rotation flattening
- Observe that coupled islands can lead to complete rotation collapse and disruption
- Core mode alone apparently only flattens profile

Longest duration discharges exceed 70% non-inductive current fraction during high-β phase

85% of non-inductive current is \(\nabla p\)-driven = BS + Diamagnetic + PS

• TRANSP agrees with measured neutron rate to within \pm 15% during high- β phase

- Normalize at high $\beta \Rightarrow$ TRANSP over-predicts neutron rate early and late in shot
 - Low-f MHD is present at these times \Rightarrow fast-ion diffusion and/or loss likely
 - Assessing impact of MHD on J_{NBI} profile and q-profile evolution

NSTX Error Fields & Locked Modes Plans and initial results from the 2005 campaign

Jonathan Menard

for the NSTX Research Team

NSTX Physics Meeting July 25, 2005

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAERI Hebrew U loffe Inst **RRC Kurchatov** Inst TRINITI KBSI KAIST ENEA, Frascati CEA. Cadarache IPP, Jülich IPP, Garching ASCR. Czech Rep U Quebec

College W&M Colorado Sch Mines Columbia U Comp-X **General Atomics** INFI Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD U Colorado U Maryland U Rochester **U** Washington **U Wisconsin**

Goals of experiment

• Study low- β locked-mode threshold during I_P flat-top

- Contribute low-A data to scaling studies: $\frac{b_{pen}}{B_t} \propto n^{\alpha_n} B^{\alpha_m} q^{\alpha_q} (R/a)^{\alpha_A}$

- $\alpha_n \approx 1, \ \alpha_B \approx -1, \ \alpha_a \approx 0.8 1.6, \ \alpha_A \approx 0.4 0.8 \text{ (MAST)}$
- Measure threshold for locking vs. phase at fixed n, B, shape
 - "Measure" any static intrinsic error field, and correct for it
- Determine density scaling of threshold
- Determine B scaling of penetration threshold
- Determine elongation scaling of threshold
 - Scan range of κ from 1.6 for MDC-6 LSN to typical NSTX κ =2
- Determine q* and q₉₅ (triangularity) scaling of threshold

Experiment focuses on moderate δ LSN shape

Can compare directly to ITPA Joint-Expt locked-mode results

Relationship to other experiments and results

Locking threshold experiments indicate clear asymmetry in response to varied EF direction

- I_P=0.7MA
- B_T = 4.5kG
- q(0) =1.1-1.5 (no sawteeth)

Inferred amplitude and direction of EF can change 30% and 15° if line-average density is used in place of local n_e

Internal B_R sensors measure up/down asymmetries in PF coil systems \rightarrow error fields

Measured EF amplitude is consistent with PF5 shift model, but EF directions disagree by 35-60°

Preliminary density threshold scaling results

Need to widen density scan, and test at other B and q

Near-term EF/locked-mode plans

- Expand density scan range \rightarrow density scaling
- Determine EF from locking at higher β in L-mode
 - Higher β increases PF5 vertical field at fixed I_P and B_T
 - Further test of PF5 as source of error field
- Implement & test pre-programmed EF correction – Then complete q, B, shape scans
- Dynamic EF correction when feedback is ready