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NSTX is pursuing the integration of high β and 
high confinement with fully non-inductive operation

• High beta
– Increased plasma shaping factor
– Rotational stabilization of the resistive wall mode (RWM)

• High confinement
– Developing small ELM regimes at high shaping factor
– New MSE data elucidating role of q profile in electron transport

• High non-inductive current fraction
– Using NBI + BS to achieve high fNI
– Determining requirements for fNI 100%, stationary J profile

• Plasma startup without solenoid
– Coaxial Helicity Injection
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New divertor poloidal field coils have significantly 
enhanced the plasma shaping capabilities of NSTX

• Highest κ 2.7 now obtained at highest δ 0.8, S ≡ q95 IP/aBT 35
– Record stored energy = 430kJ at IP=1.4MA, βN=5.3, βT = 29%, q*=2.3

2004 2005

New divertor coilOld divertor coil

• Small ELM regime recovered at high κ > 2.5 with new divertor coils
– Previously observed onset of large ELM-like events when κ > 2.2

〈δ〉

κ

All values at 
MAX(βT) > 20%

Record stored 
energy = 430kJ 

at IP = 1.4MA

2004 2005
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Rotational stabilization of the RWM is key 
to sustained plasma operation at maximum β in NSTX

• High βt < 40%, βN = 7.2 reached

βN

βN/li = 12 68
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• Operation at highest βN is sustained
for >> τwall with βN / βN

no-wall > 1.3
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New record βN
using new PF1A coils

τWALL

• Global MHD modes can lead to rotation damping, β collapse
• Understanding of sustained RWM stabilization needed for ITER-AT
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Record discharge pulse-lengths have been achieved 
by operating with sustained H-mode and high βN

• H-mode with small ELMS ⇒ reduced flux consumption, slow density rise
• βN > 4 for ∆t > 1s at high βP > 1 increases bootstrap fraction, lowers VLOOP

βN

IP (MA) 

VSURFACE (V)

βT = 17%
βP = 1.5, li = 0.65

τCR

Time (s)

ne / nGW

κ = 2.3, δL = 0.75, δRSEP = -1cm

τE

H89P = 2-2.2
H98(y,2) = 1-1.1
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MSE data indicates low loop-voltage phase 
ends at onset of saturated n=1 mode when qMIN 1

• Saturated n=1 mode 
persists for 0.5s late in 
discharge evolution

• Central rotation drops by 
factor of 3 at mode onset
– Edge fφ maintained
– Ti / Te 1 (not shown)

• βN = 6 decreases to 4
– βN = 6 above no-wall limit  
– βN = 4 below no-wall limit?

• No RWM observed…

• qMIN sustained near 1
– No sawteeth observed
– Discharge runs out of OH 

flux and TF flat-top
– “Hybrid” mode?

Time (s)

Core fφ (kHz)

Edge fφ

βN

PNBI = 6MW

qMIN

qMIN without Er correction

(Nova Photonics)



Synergistic coupling between rotation and diamagnetic 
stabilization may explain saturation of 1/1 mode in NSTX

• Rotational and kinetic stabilization effects are amplified at high β and MA
– Non-linear 2-fluid M3DM3D simulations predict transformation from sawtooth to saturated 1/1

Saturation with hot spot pulled away from x-point

Iso-temperature contours

Displaced core
“hot-spot”

Co-injection
w/ 2-fluid Nonlinear 2-fluid 

MHD simulations
(M3D – PPPL, NYU, MIT)

MA=+0.3

Mode crashes faster than single-fluid MHD

Rotation damping physics:
• Neoclassical Toroidal Viscosity (NTV) from mode 

δB good candidate to explain rotation flattening
• Observe that coupled islands can lead to 

complete rotation collapse and disruption
• Core mode alone apparently only flattens profile

Counter
injection  
w/ 2-fluid

MA=-0.3
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Longest duration discharges exceed 70% 
non-inductive current fraction during high-β phase

• 85% of non-inductive current is ∇p-driven = BS + Diamagnetic + PS

Neutron rate comparison (normalized)

1014 s-1

• TRANSP agrees with measured neutron rate to within ± 15% during high-β phase
• Normalize at high β ⇒ TRANSP over-predicts neutron rate early and late in shot

– Low-f MHD is present at these times ⇒ fast-ion diffusion and/or loss likely
– Assessing impact of MHD on JNBI profile and q-profile evolution

fNI > 70%

Diam+PS
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Goals of experimentGoals of experiment

•Study low-β locked-mode threshold during IP flat-top
– Contribute low-A data to scaling studies:

• αn ≈ 1, αB ≈ -1, αq ≈ 0.8 – 1.6, αA ≈ 0.4-0.8 (MAST)

– Measure threshold for locking vs. phase at fixed n, B, shape
• “Measure” any static intrinsic error field, and correct for it

– Determine density scaling of threshold

– Determine B scaling of penetration threshold

– Determine elongation scaling of threshold
• Scan range of κ from 1.6 for MDC-6 LSN to typical NSTX κ=2

– Determine q* and q95 (triangularity) scaling of threshold
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Experiment focuses on moderate Experiment focuses on moderate δδ LSN shapeLSN shape

Can compare results to 
previous NSTX locking data

Can compare directly to ITPA 
Joint-Expt locked-mode results
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Relationship to other experiments and resultsRelationship to other experiments and results

• LSN shape used in high-A 
identity experiments which 
matched ρ* and ν* 

MAST Data:

• Shaping dependence and 
separation of q95, q*, qcyl at 
low-A not considered yet in 
high-A scaling studies…From

ITPA
2004
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Locking threshold experiments indicate clear Locking threshold experiments indicate clear 
asymmetry in response to varied EF direction asymmetry in response to varied EF direction 

• IP=0.7MA
• BT = 4.5kG
• q(0) =1.1-1.5

(no sawteeth)

Inferred amplitude and 
direction of EF can 
change 30% and 15º if 
line-average density is 
used in place of local ne

B⊥ 2,1 = 1.3G

φEF = 140º

ne at q=2
4×1018m-3
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Internal BInternal BRR sensors measure up/down sensors measure up/down 
asymmetries in PF coil systems asymmetries in PF coil systems error fieldserror fields

Filament model of 
coil/sensor system Largest apparent shift occurs in 

primary vertical field coils (PF5)

PF3U

PF2U

PF3L

PF2L

PF5U

PF5L

24 BR

Sensors
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Measured EF amplitude is consistent with PF5 Measured EF amplitude is consistent with PF5 
shift model, but EF directions disagree by 35shift model, but EF directions disagree by 35--6060ºº

Error field inferred from 1st

locked-mode experiments
Error field predictions 

from shifted PF5L model

2005
BR data

2004      
BR data 

B⊥ 2,1 = 1.3G

φEF = 140º

ne at q=2
= 4×1018m-3

IPF5 = 4kA
B⊥ 2,1 = 1.6G
φEF = 105º

B⊥ 2,1 = 1.1G
φEF = 80º
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Preliminary density threshold scaling resultsPreliminary density threshold scaling results

∝ ne
0.75

∝ ne
1.0

⊥

Need to widen density scan, and test at other B and q
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NearNear--term term EF/lockedEF/locked--modemode plansplans

• Expand density scan range density scaling

• Determine EF from locking at higher β in L-mode
• Higher β increases PF5 vertical field at fixed IP and BT
• Further test of PF5 as source of error field

• Implement & test pre-programmed EF correction
– Then complete q, B, shape scans

• Dynamic EF correction when feedback is ready

17


	Physics of integrated high-performance NSTX plasmas(derived from EPS-2005 talk)
	NSTX is pursuing the integration of high b and high confinement with fully non-inductive operation
	New divertor poloidal field coils have significantly enhanced the plasma shaping capabilities of NSTX
	Rotational stabilization of the RWM is key to sustained plasma operation at maximum b in NSTX
	Record discharge pulse-lengths have been achieved by operating with sustained H-mode and high bN
	MSE data indicates low loop-voltage phase ends at onset of saturated n=1 mode when qMIN  1
	Synergistic coupling between rotation and diamagnetic stabilization may explain saturation of 1/1 mode in NSTX
	Longest duration discharges exceed 70% non-inductive current fraction during high-b phase
	NSTX Error Fields & Locked ModesPlans and initial results from the 2005 campaign
	Goals of experiment
	Experiment focuses on moderate d LSN shape
	Relationship to other experiments and results
	Locking threshold experiments indicate clear asymmetry in response to varied EF direction
	Internal BR sensors measure up/down asymmetries in PF coil systems  error fields
	Measured EF amplitude is consistent with PF5 shift model, but EF directions disagree by 35-60º
	Preliminary density threshold scaling results
	Near-term EF/locked-mode plans

