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NSTX Is pursuing the integration of high 3 and
high confinement with fully non-inductive operation

@NsTX

High beta
— Increased plasma shaping factor
— Rotational stabilization of the resistive wall mode (RWM)

High confinement
— Developing small ELM regimes at high shaping factor
— New MSE data elucidating role of q profile in electron transport

High non-inductive current fraction
— Using NBI + BS to achieve high fy,
— Determining requirements for fy, = 100%, stationary J profile

Plasma startup without solenoid
— Coaxial Helicity Injection



New divertor poloidal field coils have significantly

enhanced the plasma shaping capabilities of NSTX
QNSTX

e Highest x = 2.7 now obtained at highest 6 = 0.8, S=qy Io/aB; = 35
— Record stored energy = 430kJ at 1,.=1.4MA, B,=5.3, B;=29%, q*=2.3
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« Small ELM regime recovered at high « > 2.5 with new divertor coils
— Previously observed onset of large ELM-like events when k > 2.2



Rotational stabilization of the RWM is key
to sustained plasma operation at maximum p in NSTX
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Global MHD modes can lead to rotation damping, S collapse
Understanding of sustained RWM stabilization needed for ITER-AT



Record discharge pulse-lengths have been achieved
by operating with sustained H-mode and high 3

@NsTX
* H-mode with small ELMS = reduced flux consumption, slow density rise

e [y >4 for At > 1s at high BP > 1 increases bootstrap fraction, lowers V|, 5op
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MSE data indicates low loop-voltage phase
ends at onset of saturated n=1 mode when q,,, 2.1

QNSTX
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Saturated n=1 mode
persists for 0.5s late in
discharge evolution

Central rotation drops by
factor of 3 at mode onset

— Edge f, maintained
— T,/ T, = 1 (not shown)

By = 6 decreases to 4
By = 6 above no-wall limit

By = 4 below no-wall limit?
* No RWM observed...

gun Sustained near 1
— No sawteeth observed

— Discharge runs out of OH
flux and TF flat-top

— “Hybrid” mode?



Synergistic coupling between rotation and diamagnetic
stabilization may explain saturation of 1/1 mode in NSTX
@NsTX

 Rotational and kinetic stabilization effects are amplified at high p and M,
— Non-linear 2-fluid M3D simulations predict transformation from sawtooth to saturated 1/1

Saturation with hot spot pulled away from x-point

Displaced core
“hot-spot”

Co-injection ’
w/ 2-fluid % y Nonlinear 2-fluid
Ma=+0.3 . » _ MHD simulations
‘ > (M3D — PPPL, NYU, MIT)
Iso-temperature contours
Counter Rotation damping physics:
'V'\‘Ijechtl'ucl’g‘ « Neoclassical Toroidal Viscosity (NTV) from mode
o6B good candidate to explain rotation flattening
Ma=-0.3 * Observe that coupled islands can lead to
complete rotation collapse and disruption
 Core mode alone apparently only flattens profile




Longest duration discharges exceed 70%
non-inductive current fraction during high-§ phase

QNSTX

« 85% of non-inductive current is Vp-driven = BS + Diamagnetic + PS
TRANSP non-inductive current

fractions for NSTX shot 116318A01
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« TRANSP agrees with measured neutron rate to within £ 15% during high- phase

 Normalize at high B = TRANSP over-predicts neutron rate early and late in shot
— Low-f MHD is present at these times = fast-ion diffusion and/or loss likely

— Assessing impact of MHD on J,g, profile and g-profile evolution
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Goals of experiment

 Study low-B locked-mode threshold during I, flat-top

. . : b
— Contribute low-A data to scaling studies: =« ;% B%g“ (R / a)“

° o~ 1, Og ~ -1, (xq ~ (0.8 — 16, Oy = 0.4-0.8 (MAST) BI

— Measure threshold for locking vs. phase at fixed n, B, shape

e “Measure” any static intrinsic error field, and correct for it
— Determine density scaling of threshold
— Determine B scaling of penetration threshold

— Determine elongation scaling of threshold
e Scan range of k from 1.6 for MDC-6 LSN to typical NSTX k=2

— Determine g* and gq; (triangularity) scaling of threshold
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Experiment focuses on moderate 6 LSN shape

Can compare results to
previous NSTX locking data
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Relationship to other experiments and results

LSN shape used in high-A
identity experiments which

matched p* and v*
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Locking threshold experiments indicate clear
asymmetry in response to varied EF direction

 |,=0.7MA o .
e Br = 4.5kG | n,atq=2
4x1018m-3

+ q(0) =1.1-1.5 Al :
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direction of EF can i
change 30% and 15° if 2T
line-average density is
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Internal B; sensors measure up/down
asymmetries in PF coil systems =2 error fields

Filament model of

24 B coil/sensor system Largest apparent shift occurs in

primary vertical field coils (PF5)
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Applied B, (Gauss)

Measured EF amplitude is consistent with PF5
shift model, but EF directions disagree by 35-60°
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Preliminary density threshold scaling results
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Need to widen density scan, and test at other B and g
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Near-term EF/locked-mode plans

« Expand density scan range - density scaling

e Determine EF from locking at higher gin L-mode
e Higher gincreases PF5 vertical field at fixed I, and B
e Further test of PF5 as source of error field

 Implement & test pre-programmed EF correction
—Then complete q, B, shape scans

« Dynamic EF correction when feedback is ready
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