Effect of HHFW on Rapidly Chirping Modes

- •Berk-Breizman model
- Plasma conditions
- Fishbones
- •TAE-band
- Possible explanations

Bill Heidbrink, Herb Berk, Eric Fredrickson, Nikolai Gorelenkov, Sid Medley, Emil Ruskov with acknowledgments to many others

Rapid Frequency Chirping is Common

Pinches, PPCF 46 (2004) S47

PDX fishbones

- Chirping in TAE band in most toroidal devices
- •Electron-driven instabilities in tokamaks
- •Columbia Dipole experiment
- Is there a generic explanation?

Berk-Breizman Model of Frequency Chirping: Propagating Holes & Clumps in Phase Space

• Analogy between "bump-on-tail" and fast-ion modes:

velocity-space gradient $\leftarrow \rightarrow$

- ... configuration-space gradient
 - Resonant ions get trapped in wave
 - Structure propagate in time

Berk, Phys. Pl. 6 (1999) 3102

NSTX 3/20/06

50 W of ECH Suppressed Chirping

 Phase space structures destroyed by RF acceleration → chirping stops

• Idea of NSTX XP: Use HHFW to suppress chirping

Stochastic Acceleration destroys phase space "clumps" and "holes"

D.Maslovsky et al., Phys.Plasmas 10 (2003) 1549

Helium L-Mode w/ Early TAES and Late Fishbones

Five Beam Configurations in Nominally Identical Plasmas

HHFW Accelerated Fast lons

HHFW Accelerated Fast Ions for All Distribution Functions

HHFW has no effect on Fishbones

HHFW has no effect on Fishbones

• Perturbative BB theory predicts δf ~ $t^{1/2}$

 Recent strongly driven simulations predict δf ~ t

• Fishbone chirp is linear in time

NSTX 3/20/06

HHFW has no effect on TAE-band chirping

HHFW has no effect on TAE-band chirping

• Chirp is linear in time

Possible effect on MHz-band chirping

•No effect in this case.

• Chirp follows t^{1/2} perturbative BB scaling

Possible effect on MHz-band chirping

• An effect in this case but one large chirp near end of pulse

Comparison
 shots are different

HHFW alters steady-frequency TAEs

•Change occurs in ~ 5 ms

Summary of Observations

• Fishbones w/ all beam combinations No effect of HHFW

•TAE chirping strongest with 90 keV source A No effect of HHFW

• Steady frequency TAEs w/ source C and 65 keV HHFW stabilizes in 1-10 ms

•CAE/GAE w/ all beams Ambiguous HHFW effect on chirping

Empirical Explanation in terms of Trapped/Passing Populations

 HHFW adds perpendicular energy → more trapped particles

• Strong chirping occurs when modes are more strongly driven

TAEs are driven by passing particles

• HHFW suppresses steady TAEs on collisional timescale by reducing passing population

• Chirping TAEs are too strong to be altered

• More trapped particles just drives fishbones harder

•Fishbones w/ all beam combinations No effect of HHFW

•TAE chirping strongest with 90 keV source A No effect of HHFW

• Steady frequency TAEs w/ source C and 65 keV HHFW stabilizes in 1-10 ms

•CAE/GAE w/ all beams Ambiguous HHFW effect on chirping

Calculations indicate the HHFW was marginal

To alter the chirp, need

$$(\delta E/E_r)^2 \gtrsim (\omega_b/\omega)^2.$$

- δE stochastic diffusion during chirp [from $(\delta E)^2 \sim D_E t$ with D_E from NPA data and *t* from chirp duration]
- E_r energy of resonant fast ions (~ 50 keV)
- ω_b trapping frequency (from measured mode amplitude of $\delta n/n \sim 0.01$ and NOVA-K calculation)
- *w* is the mode frequency (measured)

Find LHS and RHS are both O(0.01).

Alternative chirping model: "Avalanche"

Conclusions

- HHFW did not suppress chirping of fishbones or TAEs
- •Was not a definitive test of Berk-Breizman model. Used a blunderbuss instead of a scalpel
- Need better insight into a) part of phase space that drives instabilities
 & b) effect of HHFW in phase space → Better fast-ion diagnostics