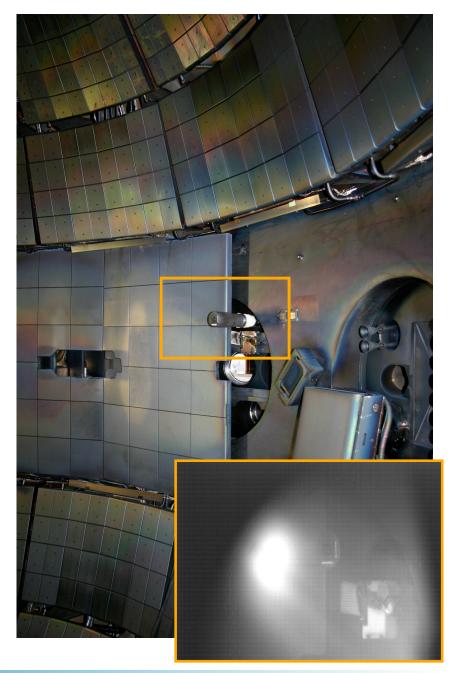


H-mode access with supersonic gas jet fueling (XP 626, Part 2)

V.A. Soukhanovskii and NSTX Team

NSTX Monday Physics Meeting Princeton Plasma Physics Laboratory Princeton, NJ

20 March 2006

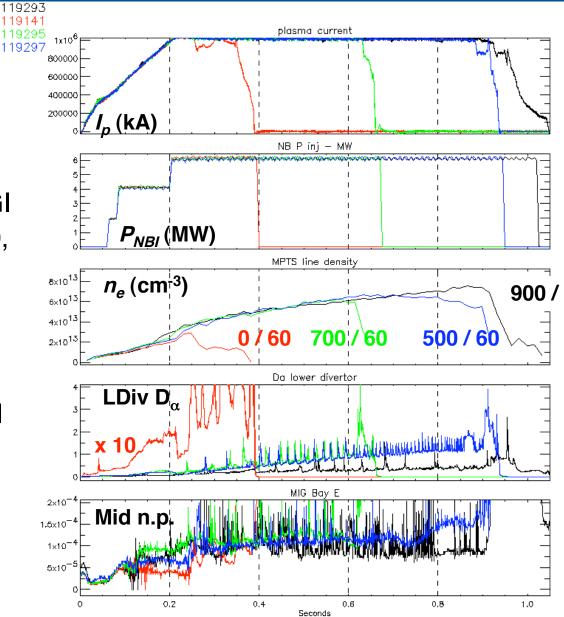


SGI on NSTX

- XP 605 includes four parts study supersonic gas (SG) jet fueling
 - Comparison of SG fueling
 efficiency with LFS gas injectors
 - H-mode access and density control with SG jet fueling
 - Front end fueling with SG jet
 - SG jet penetration through SOL in limited and divertor configurations

Challenges

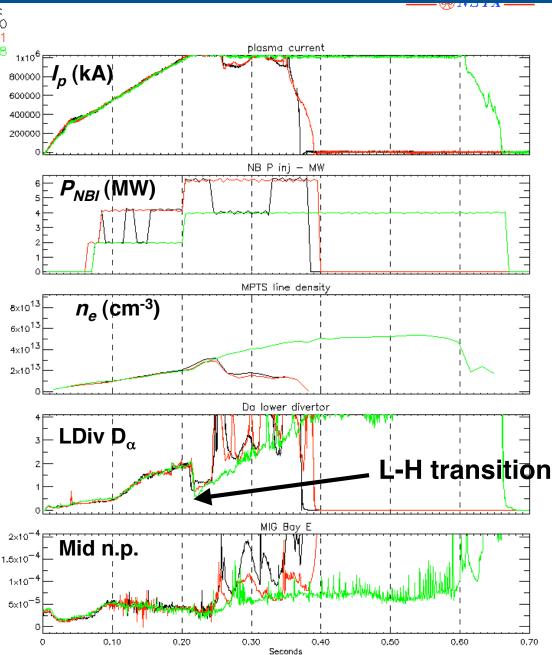
- So far has been a "filler" XP got
 two 1.5-2 hour run time segments
 Neither an ITPA nor a milestone
 topic
- Results to be presented at the 33^d
 EPS meeting



V. A. Soukhanovskii, XP 626 part 2 summary, NSTX Physics Meeting, 13 March 2006

SG jet can control density in long-pulse H-mode discharges

- Used 1 MA / 0.45 T / 6 MW NBI-heated long pulse DN shots
- SGI injected at ~ 60 Torr.l/s from 90 ms to 1000 ms
- Compare 4 shots with HFS/SGI fueling (Torr / Torr.I/s): 900 / 0, 700 / 60, 500 / 60, 0 / 60
- In 119297 SGI injected from 200 ms to 1000 ms
- Change in fueling changed ELM regime from small+Type I ELMs to Type III ELMs
- With HFS+SGI put more gas recycling and midplane neutral pressure *slightly* higher

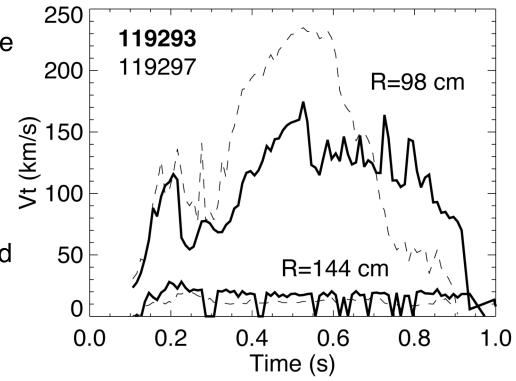

V. A. Soukhanovskii, XP 626 part 2 summary, NSTX Physics Meeting, 13 March 2006 **3 of 5**

H-mode can be obtained with SG jet + wall fueling

Shots: 119140 119141

119138

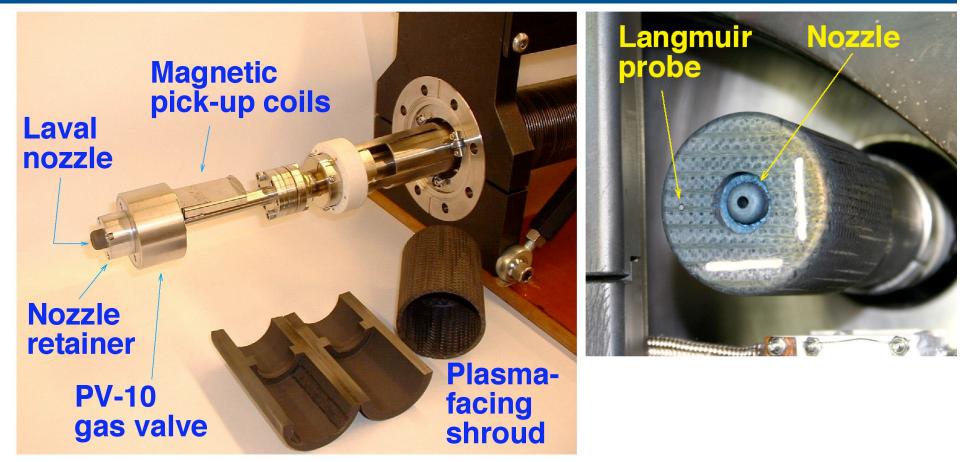
- Used 1 MA / 0.45 T / 6 MW NBI-heated long pulse DN shots
- SGI injected at ~ 60 Torr.l/s from 90 ms to 1000 ms
- All three shots no other than SGI flattop gas fueling
- Got delayed L-H transition
- In 119138 apparently had strong wall fueling
- In 119140, 119141 got locked modes and large MHD events
 - apparently due to low fueling



V. A. Soukhanovskii, XP 626 part 2 summary, NSTX Physics Meeting, 13 March 2006 4 of 5

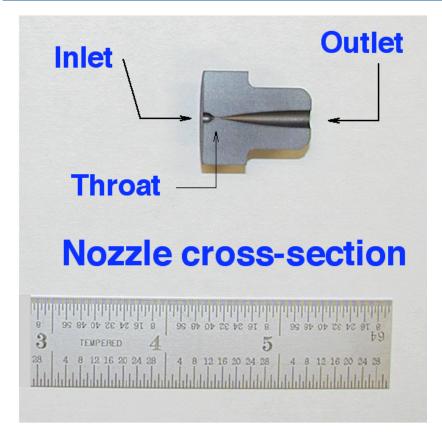
Various H-mode SG jet fueled scenarios are possible

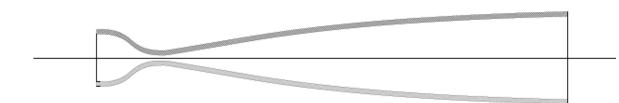
- SGI in combination with HFS fueling can be used to obtain dN/dt~0
- Considering two scenarios: 1/ Use low-level HFS fueling for H-mode initiation and add SGI for density control and sustainment 2/ Use SGI from t=0 for Hmode initiation and add low-level HFS fueling to avoid locked modes and MHD events
- May need to increase SGI plenum pressure to obtain higher fueling rate
- In all SGI shots central toroidal rotation 70 % higher, but edge rotation always lower than in HFS fueling only shot. These results can further test the theory of edge *E_r* and L-H transition dependence on edge neutral particle source location



V. A. Soukhanovskii, XP 626 part 2 summary, NSTX Physics Meeting, 13 March 2006

SGI head is a densely packed apparatus

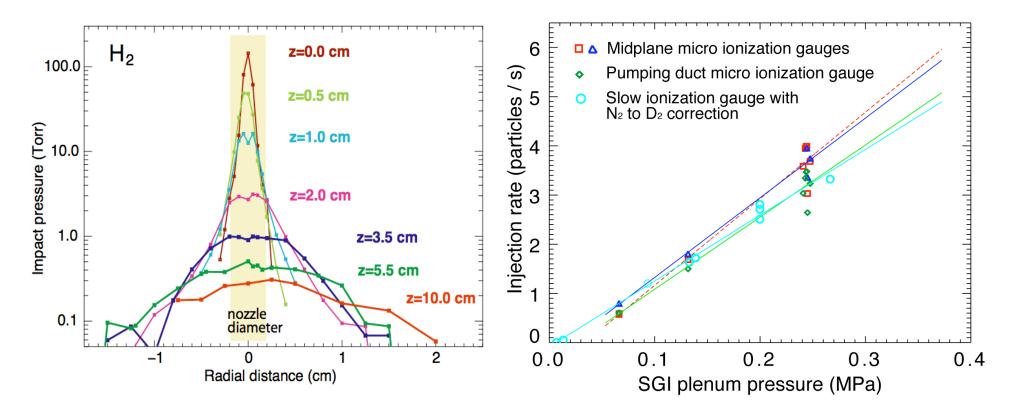

- Veeco PV-10 gas valve: *d_{throat}=*0.02", typical opening time 1-2 ms, driving voltage150 V
- Thermocouples in shroud and in gas valve
- Two magnetic pick-up coils on shroud front surface for B_{z} , B_t measurements
- Three magnetic pick-up coils in shielded box inside shroud for B_z , B_r and magnetic fluctuations measurement
- Langmuir probe: flush-mounted design, d_{tip} = 1.75 mm, *I-V* recorded at 5 kHz, -50 < *V*<50
- Shroud: CFC and ATJ graphite


V. A. Soukhanovskii, XP 626 part 2 summary, NSTX Physics Meeting, 13 March 2006

Laval contoured nozzle is used in NSTX SGI

- Graphite nozzle L = 23.4 mm
- True Laval geometry calculated for air at P=1 atm, designed for M = 8, linearly scaled down to obtain $d_{throat} = 0.01$ " (throughput requirement)
- Compressible fluid theory: isentropic core and boundary layer scale differently!
- Nozzle is made by mechanical machining using special tool with tolerance +- 0.0025"
- Nozzle attached to valve with a retainer using Viton O-ring

Nozzle design courtesy of Drs A. J. Smits, S. Zaidi (Princeton Univ.)



V. A. Soukhanovskii, XP 626 part 2 summary, NSTX Physics Meeting, 13 March 2006

7 of 5

SGI parameters characterized off-line and in situ

- NSTX SGI is operated at 45-60 Torr I /s (~ (3.2 5) x 10²¹ mol/s)
- NSTX gas injector rates: HFS: 10 50 Torr I /s, LFS: 20 120 Torr I /s
- Jet divergence half-angle: 6° 25°
- Hydrogen / Deuterium: M = 4, $T \sim 60 160$ K, $\rho \sim 5 \times 10^{17}$ cm⁻³,

 $Re = 6000, v_{therm} \sim 1100 \text{ m/s}, v_{flow} = 2400 \text{ m/s}$

