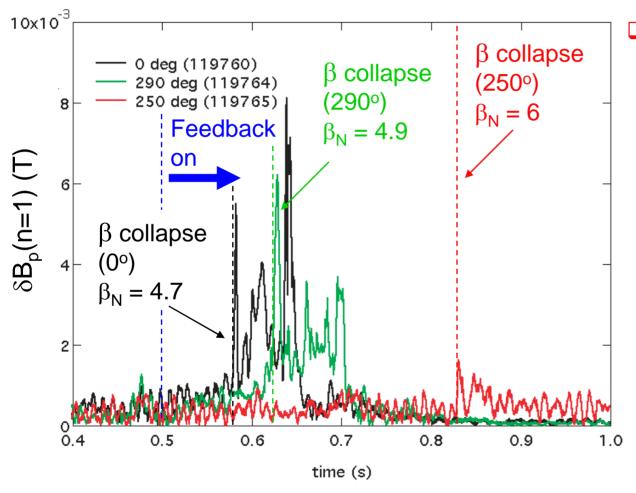

<u>APS 2006 invited talk submission – Active RWM Stabilization in High Beta, Low Rotation Plasmas</u>

- First active stabilization of the pressure-driven RWM in a low aspect ratio tokamak
 - Demonstration of positive/negative feedback vs. phase and gain
- Stabilization of a low rotation plasma ITER relevance
 - $\Omega_{\phi}/\Omega_{crit} \sim \frac{1}{4}$; in range of predicted ITER rotation
 - System geometry similar to ITER
 - Rotation profile reduction/variation gives insight into RWM stabilization mechanism
- □ Significant n = 2 observed in n=1 active stabilized cases
- Mode rigidity violated in certain cases
 - Mode rigidity observed in DIII-D; assumed in RWM calculations made in the community
 - New observation demonstrates need for "multi-mode" calculation in future theoretical investigations


RWM stabilized at low rotation for longer than 50/YRWM

- Reduction of Ω_φ by non-resonant n = 3 magnetic braking
 - Due to neoclassical toroidal viscosity
 - $lue{}$ In ITER $\Omega_{\scriptscriptstyle \phi}$ range
- Significant n = 2 amplitude during active stabilization
- Mode rigidity violated in certain cases
- Stabilized for longer than published DIII-D result

Varying RWM feedback relative phase demonstrates positive/negative feedback

Phase scan

- Varied through 360°, finer scan in 270° range; 225° appears to be "best"
- Positive feedback (destabilizing) in range ~ 90° - 290°
- n = 3 braking required to generate RWM when phase set to most favorable settings

