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Poster Outline

• Background of core turbulence measurements on NSTX.

• Description of reflectometry hardware:
- 13.5-53.5 GHz FMCW profile system.
- 30, 42, and 49.8 GHz quadrature channels.
- 26-40 GHz homodyne radial correlation system.

• Analysis technique:
- Full-wave simulations with modeled turbulence.
- Statistical optics techniques for comparison with experiments.

• Overview of correlation length measurements in various NSTX L-
mode discharges (NB-heated, RF-heated, He Ohmic).

• Ohmic H-mode discharges show first direct connection
between core turbulence properties and confinement.

• Future planned reflectometer capabilities on NSTX.
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Background and Motivation

• Core transport of long wavelength turbulence (ITG modes, TEM’s,
micro-tearing modes with kθρs≤ 1) thought to be suppressed due to
increased ExB shear, Ti/Te ratio and gradient β effects.

• Reflectometry on NSTX has focused on measuring density fluctuation
levels and radial correlation lengths in low density L-mode discharges.

• Reflectometer correlation lengths (Lr) are calculated from 1/e
decorrelation distance of homodyne signals and show similar values
over a wide variety of discharges (NB- and RF-heated, He Ohmic).
Typical results:
- Lr increases from ~2 cm near edge to ~10-20 cm in core. These

values are ~5-20 x ρs. Correlation lengths always increase towards
the core.

• Recent studies using full-wave simulations have shown that density
turbulence correlation lengths (Ln) can be different from Lr.

• Focus of present study:
- Simulated turbulence with full-wave simulations to estimate values

of Ln and δδn/n.
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DIII-D
L-Mode

DIII-D
L-Mode
5-10 ρρs

Lr Compared in a Variety of L-Mode Plasmas

Ohmic(He)/NB-heated(D2)/RF(D2)

• Ohmic (He) , RF- & NB-heated L-
modes.
- Lr~2-15 cm from r~0.7-0.3 are seen

irrespective of heating method.

Ohmic He
NB-heated D2

RF-heated D2
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• Dependencies:
- Seems to scale with ρs.
- Lr and Lr/ρs decrease with radius.

• Really want turbulence correlation
length Ln instead of Lr to look at
scaling, etc.
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30 & 50 GHz
Quadrature

33-50 GHz Profile
Reflectometer

42 GHz
Quadrature

26-40 GHz
Correlation

Bay J Reflectometers
• Density Fluctuations
• Density Profiles

13-20 & 20-32 GHz
Profile Reflectometers

Reflectometer Hardware on NSTX
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Homodyne Quadrature Reflectometry
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• Reflectometer uses direct-conversion detection:

• Complex signal (amplitude and phase information).

• Local measurement of fluctuations near cutoff surface (usually).

• For low k coherent fluctuations, phase information alone is sufficient
to recover δn/n proportional to ∆θ.

• For higher k and turbulent fluctuations, reflectometer response depen-
dent on details of the turbulence as well as antenna geometry (2D
effects).
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Homodyne Radial Correlation Reflectometry

• Fixed frequency f1 and swept frequency f2 with identical launch and receive
horns reflect from different cutoff layers in the plasma.

• Correlation coefficient function of homodyne signals x and y is modulated
by the swept DC phase of f2.

• Envelope of correlation coefficient function mapped from from frequency to
radial position using density profiles from Thomson scattering.

• Correlation length Lr is defined here as the e-folding distance of the
correlation coefficient function envelope (best fit to Gaussian).
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Role of Simulations with Modeled Turbulence
and Full-Wave Code

• Experiment
- Real turbulence in 3-D space evolving in time.
- Reflectometer response from turbulence is time-dependent

complex signal dependent not only on turbulence properties but
also on stationary background profiles as well as antenna geom-
etry, etc.

- Statistical properties of reflectometers signal usually equated to
statistical properties of turbulence (spectra, level, correlations,
etc.). This is in general not correct.

• Simulation of Turbulence
- Use simple model for density fluctuations with certain statistical

quantities as input (k and ω spectra, δn/n, correlation length and
time).

• Full-Wave Code for Reflectometer Response
- Background profiles (density, temperature, flow, etc.) are estimat-

ed from other diagnostics.
- Accurate geometry of plasma with respect to reflectometer

horns.

• Comparison Between Experiment and Simulation
- Use statistical optics.
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• Superposition of sinusoids with random phase and obeying:

• Turbulence is homogeneous.

• For present study ignore τ and v.

Turbulence Model
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PPPL 2-D Full-Wave Code (FWR2D)
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Density Contours Wave Amplitude for 42 GHz O-Mode

• 2-D density and temperature contours from MPTS or reflectometer and EFIT.
• Propagation of electric field amplitude E(x,t) described by

• ε is O- or X-mode dielectric.
• E.J. Valeo, G.J. Kramer, R. Nazikian, Plasma Phys. Control. Fusion 44, L1 (2002).
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Statistical Optics

• Coherent Reflection (strong function of δn/n):

• Normalized Cross-Correlation or Lr (strong function of Ln and δn/n):

• Fluctuation Index:

• Elongation Factor:



NSTX Physics Meeting, May 22, 2006

G and Lr from Simulation
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• Shot 113115, t=330 ms.
• Comparison of correlation and quadrature

reflectometry data with simulations.
• Experimental results:

G~0.85 for 42 GHz, ~0.7 for 30 GHz.
Lr=~11.4 cm

• Homodyne tracks complex amplitude Lr
well but overestimates slightly.

• Lr is strongly dependent on δδn/n.
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Work With Simulations is Ongoing

• According to 2-D full-wave code:
- Phase response not a good measure of turbulence quantities.
- Homodyne signal and complex signals offer similar Lr. Satisfac-

tory if turbulence is not evolving.
- Lr can vary significantly from actual turbulence density corre-

lation length. Strongly dependent on δn/n. Less dependent
on other parameters.

• δn/n dependence may explain consistent observation of large
correlation lengths (10-20 cm) observed in core.

• Corroboration of code/turbulence model with experiments is still
limited. Definitive test to be performed on DIII-D including
detailed comparison with BES.

• Future work:
- Continue 2-D reflectometry simulations for different plasma

conditions. In particular, consider radial variation of turbu-
lence wavenumber spectra and δn/n.

- Include flows. Consider decorrelation time, spectra.
- Comparison with global non-linear gyrokinetic simulations

(GYRO).
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Future Plans for Turbulence Measurements
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• Quadrature detection for correlation reflectometer is the key.
- Can trade off spatial resolution for better time resolution (<100 µs).
- Channels can now be used simultaneously as monitors of the density

fluctuation level.
• Can now run profile system simultaneously with accurate estimates of

density profile and cutoff location for dynamically evolving profiles.
• In addition to radial correlation, can separate channels for poloidal or

toroidal correlation. Can measure turbulence flow velocity.
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