Are they TAEs in NSTX?

N. N. Gorelenkov[†]

in collaboration with E. Fredrickson[†], H. L. Berk[‡]

†Princeton Plasma Physics Laboratory, Princeton

‡ Institute for Fusion Studies, Austin, Texas

NSTX seminar, May 30

What is TAE frequency?

What is TAE frequency?

• Simple, commonly used estimate

$$\omega_{TAE} = \frac{v_A}{2qR} \Leftarrow k_{\parallel m} = -k_{\parallel m+1}$$

• For NSTX #115731 with reversed q-profile, $q_{min}=1.3$, we find

$$\omega_{TAE} \simeq 90kHz$$
.

Rotation is important factor in mode identification in NSTX

$$f_{pl} = f_{lab} - nf_{rot}$$

What is TAE frequency?

• Simple, commonly used estimate

$$\omega_{TAE} = \frac{v_A}{2qR} \Leftarrow k_{\parallel m} = -k_{\parallel m+1}$$

• For NSTX #115731 with reversed q-profile, $q_{min}=1.3$, we find

$$\omega_{TAE} \simeq 90kHz$$
.

Rotation is important factor in mode identification in NSTX

$$f_{pl} = f_{lab} - nf_{rot}$$

In general low frequency modes are more effective in radial EP transport.

MHD activity @ reversed shear #115731 ($f_{TAE} \simeq 90kHz$)

At t=0.262sec, n=2 mode frequency $f_{lab}\simeq 103\,kHz$, $f_{pl}\simeq f_{lab}-n\times 30=43\,kHz$, \Rightarrow too low for TAE for all observed modes.

A little bit of theory in low- β large aspect ratio equilibrium

Simplified shear Alfvén and acoustic equations (from Cheng, Chance '86):

$$\begin{array}{ccc} \Omega^2 \hat{\xi}_s & -\hat{k}_{\parallel}^2 \hat{\xi}_s & -q^2 \gamma \beta \sin \theta \nabla \cdot \xi & = 0 \\ -2 \sin \theta \hat{\xi}_s \Omega^2 & +\Omega^2 \nabla \cdot \xi & -\frac{\gamma \beta}{2} \hat{k}_{\parallel}^2 \nabla \cdot \xi & = 0, \end{array}$$

where $\Omega = \omega q R/v_A$, $\hat{\xi}_s \simeq \xi \cdot \vec{e}_{\theta}/R$, $\hat{k}_{\parallel} \equiv i\partial/\partial \theta$.

- Pure Alfvénic branch $\Omega^2=k_{\parallel}^2+\gamma\beta q^2\left(1+1/2q^2\right)$ (Chu'92, Breizman'05, Berk'06, Turnbull '92).
- Pure acoustic mode (AM) $\Omega^2 = \frac{1}{2} \gamma \beta k_{\parallel}^2$.
- GAMs: $\Omega^2 = \gamma \beta q^2 (1 + 1/2q^2)$ (Winsor'68, Breizman'05, Berk'06).
- Toroidal AM: $\Omega^2 \ll \gamma \beta q^2$ is new (preliminary): $-\hat{k}_{\parallel}^2 \hat{\xi}_s \sim q^2 \gamma \beta \sin \theta \nabla \cdot \xi$ (AM) at $k_{\parallel} = 0$. One can show that $\Omega^2 \sim \epsilon \beta^2$ due to poloidal variation of the Jacobian induced by toroidicity (in progress).

Consider high aspect ratio low-\beta tokamak - "nonspherical torus"

 $R_0 = 0.806m$, but with the aspect ratio A = 10, a = 0.081m, $\beta \equiv 2p/B_0^2 = 0.3\%$, $q_a = 11.3$, q(0) = 2.16, $q_{min} = 1.3$, $\gamma = 5/3$ (if applied)

Consider high aspect ratio low-\beta tokamak - "nonspherical torus"

 $R_0 = 0.806m$, but with the aspect ratio A = 10, a = 0.081m, $\beta \equiv 2p/B_0^2 = 0.3\%$, $q_a = 11.3$, q(0) = 2.16, $q_{min} = 1.3$, $\gamma = 5/3$ (if applied)

Acoustic filtered continuum (Chu'92) vs

Consider high aspect ratio low-\beta tokamak - "nonspherical torus"

$$R_0 = 0.806m$$
, but with the aspect ratio $A = 10$, $a = 0.081m$, $\beta \equiv 2p/B_0^2 = 0.3\%$, $q_a = 11.3$, $q(0) = 2.16$, $q_{min} = 1.3$, $\gamma = 5/3$ (if applied)

Acoustic filtered continuum (Chu'92) vs

Full MHD continuum

Numerical analysis is very much simplified with filtering.

BAE and TAE gaps are well reproduced with the filtering technique.

NSTX medium $\beta = 5\%$ equilibrium from TRANSP @g MSE

- Overlaid red is for acoustic mode filtering scheme (Chu'92)
- Overlaid blue continuum includes q correction $(1+1/2q^2)$.
- Black is for full ideal MHD NOVA continuum. Influens on gaps from the acoustic modes.
- Global AMs are more likely at high β since frequency spacing for the acoustic continuum is $\Delta\Omega\sim\sqrt{\gamma\beta/2}$.
- Hard to find the mode at lower to medium beta due to strong interaction with the continuum !!

TRANSP high $\beta = 21\%$ equilibrium case

- Red is for acoustic mode filtering scheme (Chu'92): TAE and BAE (Turnbull '93) modes are recovered.
- Black is for full ideal MHD NOVA continuum.
- Global AMs are more likely to exist at high β since frequency spacing for the acoustic continuum is $\Delta\Omega \sim \sqrt{\gamma\beta/2}$.
- Two AM branches are found. GAM is interacting strongly with the Alfvén branch.
- TAM forms global eigenmodes above acoustic continuum.

TAE structure with and without filtering

Filtered continuum opens the gap

Full continuum limits TAE localization

Mode structure is notably different in two models Interaction with the continuum is stronger without filtering. Is continuum damping proportional to β (MAST results)?

Global Acoustic mode structure and frequency

ODNSTX

First radial TAM (higher f = 35kHz)

Second radial TAM f = 33.8kHz

Two dominant harmonics, m = 2,3, are present due to $nq_{min} = 2.6$.

TAEs are observed in NSTX at higher frequency

• Most unstable mode numbers (larger amplitude at the edge) scale with a/q^2 (Heidbrink '02, Gorelenkov '03).

SUMMARY

- Preliminary analysis show the existence of low-n global Toroidicity modified Acoustic eigen-Modes (TAM) in NSTX.
- The n=2 TAM frequency computed by NOVA, 35kHz, is very close to the observed frequency 43kHz after deducting the toroidal rotation Doppler shift for #115731 shot.
- TAMs can exist in high beta plasma with wider BAE gap.
- TAEs are pushed higher in frequency due to beta effect.
- Kinetic modification of MHD theory is important issue for new class of modes (parallel phase velocity is on the order of the sound speed).