XP 721 - June 5, 2007 (Hubbard, Maingi, Meyer)

1. Repeat \#117747 with appropriate rtEFIT changes to get target shape at 200 ms ; goal is to get a shape like \#123644 but with the z-axis shifted downward by about 12 cm . Start first source early at $60-80 \mathrm{~ms}$, and add second source at $200-$ 250 ms as dictated by H-mode access. (3-5 discharges)
This was accomplished, e.g. 124641 @ $0.6 \mathrm{MA}, 0.45 \mathrm{~T}$; shot had easy H-mode access (drsep=-15mm) and did have Type V ELMs, although q95~9.5, as are lower triangularity (0.51-0.65) and kappa (1.8-1.9).
2. Decrease $q 95$ to 5.5 by increasing I_{p} to 0.9 MA (from 0.6 MA) and dropping B_{t} to 0.4 T (from 0.45 T) in two steps (35 discharges)
Had trouble at $0.9 \mathrm{MA}, 0.45 \mathrm{~T}$ e.g. $642-44 ; 0.75 \mathrm{MA}$ and 0.45 T worked (124645) but the key was getting H-mode in the Ip ramp. \#124645 had mixed Type I and Type V ELMs. \#124645 was not reproducible later in the day; tried 0.750.8 MA and 0.4-0.45 T. Don't know why.
3. Vary the $\beta_{\text {ped }}$ value by doing an NBI scan from 1 to 2 NBI sources; we expect ~ 1 source will yield the target $\beta_{\text {ped }}$ value. Use NBI de-rated source (source C) as needed to obtain finer control over $\mathrm{P}_{\text {in }}$ and therefore $\mathrm{T}_{\text {ped }}, \beta_{\text {ped }}$ and v^{*}. (3-5 discharges).
Did this at $0.6 \mathrm{MA}, 0.45 \mathrm{~T}$ as in step 1 , with power levels of 1 MW, 2 MW, 3 MW, 4 MW, and 5 MW. Looks like lower limit of beta-poloidal threshold of about 0.7 in this shape. We got as high as 1.3 in beta-p, and have to look carefully to see when the small ELMs disappeared. Beta scan: 124656-658. Kappa/delta closer than step 1.
4. Increase B_{t} to 0.5 T to separate v^{*} and $\beta_{\text {ped }}$ (2 discharges) Did not get to this.

