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New experimental observations on JET and NSTX motivate
low frequency mode study

JET PPPL
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• JET:
2MW ICRH in low plama density ⇒
high H-minority beta:
βH ∼ τse∼ n−1

e ;
βH ∼ βplasma(∼ 2%).

• New chirping frequency activity
fpl = 0−20kHz
(for RSAE, Alfvénic cascades
fpl 6= 0)

• Structure at upper limit (another
mode, same n).

• Only even n’s were observed.

Frequency is much lower than RSAE/TAE frequency, vA/qR:
ω∗ = 0.5kHz is small
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Variety of MHD instabilities are routinely observed in NSTX
JET PPPL
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• Edge Magnetic spectrum
and internal high-k scat-
tering see the same low-
f activity as in JET, t =
0.27s.

• only even numbers,
sweeping frequency,
n = 2,4

• reversed shear q-profile
from MSE

• fTAE = vA/2qR≃ 90kHz

• t = 0.262sec, n= 2 mode
frequency flab ≃ 30 −
50kHz, fpl ≃ flab − n×
15= 0−20kHz, ⇒ too
low for TAE for observed
n = 2 activity.
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f activity as in JET, t =
0.27s.

• only even numbers,
sweeping frequency,
n = 2,4

• reversed shear q-profile
from MSE

• fTAE = vA/2qR≃ 90kHz

• t = 0.262sec, n= 2 mode
frequency flab ≃ 30 −
50kHz, fpl ≃ flab − n×
15= 0−20kHz, ⇒ too
low for TAE for observed
n = 2 activity.

What are these modes: EPMs, fishbones, KBM, TAEs?

Gorelenkov: BAAEs in JET and NSTX 3 of 21



What is the importance of low- f instabilities?
JET PPPL

• New class of instabilities called here Beta-induced Alfvén Acoustic
Eigenmode (BAAE) helps to study two fundamental MHD waves:
Alfvén and acoustic.
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particle transport:
– On NSTX bursting low- f modes lead to wide range of losses up to

40%of injected beam ions (Fredrickson’06).
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Alfvén and acoustic.

• As opposite to high- f instabilities, low- f MHD mostly result in radial
particle transport:
– On NSTX bursting low- f modes lead to wide range of losses up to

40%of injected beam ions (Fredrickson’06).
• MHD spectroscopy application for q-profile diagnostic:

– BAAE can complement MHD spectroscopy in low-, medium-β
plasma

– can be the only alternative in high-β plasma, such as in STs.
• Due to coupling to acoustic branch strong interaction with thermal

ions is expected:
– ⇒ strong drive due to fast ions and strong damping due to thermal

ions,
– ⇒ potential for energy channeling from beam ions directly to

thermal ions (α-channeling).
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TALK OUTLINE
JET PPPL

1. Theory of Alfvén - acoustic continuum in ideal MHD

2. JET analysis and data comparison

3. NSTX analysis and data comparison

4. Discussion and Summary
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Theory of Alfvén/acoustic continuum
JET PPPL
Simplified shear Alfvén and acoustic coupled equations in low-β, large aspect ratio
plasma, low ω∗, (Cheng, Chance ’86):

Ω2y+∂2
‖y +γβsinθz = 0 (Al f venic) (1)

Ω2
(

1+
γβ
2

)

z+
γβ
2

∂2
‖z +2Ω2sinθy = 0 (acoustic) , (2)

where Ω ≡ ωR0/vA, y≡ ξsε/q, ξs ≡~ξ · [B×∇ψ]

|∇ψ|2
and z≡ ∇ ·~ξ , k̂‖ ≡ i∂‖.

Coupling is due to geodesic curvature: m Alfvénic and m±1 acoustic harmonics.
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(

1+
γβ
2

)

z+
γβ
2

∂2
‖z +2Ω2sinθy = 0 (acoustic) , (2)

where Ω ≡ ωR0/vA, y≡ ξsε/q, ξs ≡~ξ · [B×∇ψ]

|∇ψ|2
and z≡ ∇ ·~ξ , k̂‖ ≡ i∂‖.

Coupling is due to geodesic curvature: m Alfvénic and m±1 acoustic harmonics.

Various solutions follows (Winsor’68, Goedbloed’75, Mikhailovski’ 75,’98,
Chu’92, Turnbull ’92, Zonca’96, van der Holst’00, Breizman’05, Berk’06):

• Pure acoustic modes (AMs) Ω2 = 1
2γβk2

‖.

• Pure Alfvénic branch Ω2 = k2
‖ + γβ

(

1+1/2q2
)

.

• GAMs: Ω2 = γβ
(

1+1/2q2
)

in the assumption of Ω2 ≥ γβ.

• Modified shear Alfvén branch Ω2 = k2
0/

(

1+2q2
)

exists for Ω2 ≪ γβ.
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Alfvén/acoustic coupling in toroidal equilibrium (schematic)

JET PPPL

• Alfvén (A) continuum at low frequency: Ω2 = k2
0,±1

• Acoustic (a) branch Ω2 = γβk2
0,±1/2(1+δ)
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Alfvén/acoustic coupling in toroidal equilibrium (schematic)

JET PPPL

• Alfvén (A) continuum at low frequency: Ω2 = k2
0,±1 /

(

1+2q2
)

(modified)

• Acoustic (a) branch Ω2 = γβk2
0,±1/2(1+δ) is coupled via m±1 sidebands

with modified Alfvén continuum (m harmonic) due to geodesic curvature and
pressure.
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4/3

BAAE gap
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Analytic dispersion for Alfvén/acoustic continuum gap is
derived

JET PPPL

• Consider JET, monotonic q-profile, ten times higher aspect ratio.

• Ω+ =
√

γβ/2/qr (compare with GAM Ω =
√

γβ
(

1+1/2q2
)

).
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Analytic dispersion - black, dashed lines.

NOVA continuum is in good agreement with theory.
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TALK OUTLINE
JET PPPL

1. Theory of Alfvén - acoustic continuum in ideal MHD

2. JET analysis and data comparison

3. NSTX analysis and data comparison

4. Discussion and Summary
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JET plasma analysis: two global BAAE modes are found
numerically

JET PPPL
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• Monotonic q−profile (EFIT),
q0 ≃ 1, qa = 4.

• Core localized and gap
BAAEs are found with one
dominant poloidal harmonic.

• Core localized BAAE has

ω = vAk‖/
√

1+2q2
min|r=0.

• Gap BAAE has
Ω+ ≃ vA

√

γβ/2/qminR.

• n = 4, rξn is shown.

• ∇ξ, m ± 1 sidebands are
present (∼ ξθ/a).
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• Core localized and gap
BAAEs are found with one
dominant poloidal harmonic.

• Core localized BAAE has

ω = vAk‖/
√

1+2q2
min|r=0.

• Gap BAAE has
Ω+ ≃ vA

√

γβ/2/qminR.

• n = 4, rξn is shown.

• ∇ξ, m ± 1 sidebands are
present (∼ ξθ/a).

BAAE frequency is related to qmin value ⇒ useful for diagnostic
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Relaxing q-profile results in BAAE frequency up-sweep
JET PPPL
• Core BAAE activity is predicted to have sweeping frequency

• Up-chirp is limited by the gap, Ω+ ≃ vA
√

γβ/2/qR.
Ω+ = 31kHz for pure electron plasma.

• Rotation is significant frot = 2.5kHz.
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NOVA predicts fBAAE = 24.8kHzagainst observed 14kHz, all n’s exist ( q0 = 1).
Possible way to resolve this is to assume local negative shea r with qmin = 3/2:
1) frequency ∼ q−1, goes down to ∼ 16kHz,
2) only even m’s are expected: m= nqmin is integer.
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NOVA predicts fBAAE = 24.8kHzagainst observed 14kHz, all n’s exist ( q0 = 1).
Possible way to resolve this is to assume local negative shea r with qmin = 3/2:
1) frequency ∼ q−1, goes down to ∼ 16kHz,
2) only even m’s are expected: m= nqmin is integer.

MSE was available only later in the shot.
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TALK OUTLINE
JET PPPL
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NSTX experiments with MSE address frequency mismatch
JET PPPL

• low density ne ≃ 3× 1019m−3,
PNBI = 2MW, ENBI = 90keV.

• 16? channel MSE measures q
profile (reversed shear).

• Goal is to validate theory.
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• low density ne ≃ 3× 1019m−3,
PNBI = 2MW, ENBI = 90keV.

• 16? channel MSE measures q
profile (reversed shear).

• Goal is to validate theory.

• Low frequency oscillations
(BAAEs) are seen unstable:

– Characteristic upshift fre-
quency evolution from zero
(plasma frame).

– BAAEs reside in wider BAE
gap f ∼

√

βpl .

– High-k component of BAAE
at r/a = 0.7 ⇒ conversion
to KAW (see H.Park poster).
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TAE/RSAEs are suppressed (see E. Fredrickson poster) and BA AEs are ex-
cited by beams in high- β NSTX plasmas (typically βpl >∼ 15%).
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Global BAAE modes are found at qmin surface in NSTX

JET PPPL
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MSE measured inversed q-profile is used in NOVA modeling.

• At high-β0 = 34%, BAE gap opens up to TAE gap.
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MSE measured inversed q-profile is used in NOVA modeling.

• At high-β0 = 34%, BAE gap opens up to TAE gap.

• Two Alfvén/acoustic (A/a) continuum branches are found with Ω2 < γβ, n = 2.

• Low shear BAAE frequency does not depend on β for q close to rational

• fBAAE is close to theory dispersion fA = vAk‖/
√

1+2q2
min|r=0.
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NOVA: BAAE broadens radially as qmin decreases

JET PPPL
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• BAAE frequency sweeps
as q-profile relaxes.

• One dominant harmonic
m= nqmin = 3.

• BAAEs interact with the
continuum.
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Ultra SXR measures the same radial structure broadening

JET PPPL

Raw USXR signal (∼BAAE structure) Radial profile evolution
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BAAE broadens as qmin decreases
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Reflectometer confirms localized BAAE structure
JET PPPL

(mm)
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<ξ >

0

1

2

2 1/2

• Three plasmas with dif-
ferent densities ne =
3−3.8×1019m−3,

– each plasma has three point
measurement

• Vertical axis refers to red solid
circles #123816.

• Two other plasma measure-
ments were normalized.

• Measurements are taken at sig-
nal maximum.

• Internal fluctuations level δn/n∼
2×10−3.
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BAAEs complement RSAEs for MHD spectroscopy

JET PPPL

• In low- to mediaum-β plasma BAAEs
complemets RSAE/TAEs.

• In high-β plasma BAAEs may be the
only tool for MHD spectroscopy.

• Zero BAAE frequency point (plasma
frame) indicates rational qmin.

• BAAE activity is terminated by some
IRE at t = 0.275s.
Potential interplay of beam driven
instabilities with internal m = 3/n = 2
kink-like instability - similar to
TAE/sawtooth nonlinear interplay
(Bernabei’01, Sharapov’06).

• RSAE/TAE and BAAE inferred qmin val-
ues are in agreement with MSE mea-
surement.
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Discussion and Summary
JET PPPL

• Theory and numerical analysis show:
– the existence of geodesic curvature induced gaps in the Alfvén/acoustic continuum

below GAM frequency (van der Holst’00),

– low-n global beta-induced Alfvén/acoustic eigenmodes - BAAE are found,

– BAAEs exist in finite beta plasma within wider BAE gap.
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below GAM frequency (van der Holst’00),

– low-n global beta-induced Alfvén/acoustic eigenmodes - BAAE are found,

– BAAEs exist in finite beta plasma within wider BAE gap.

• BAAEs are different from BAEs (Heidbrink-Turnbull-Chu-Huysmans)
interpretation as BAAEs require compressibility effect, i.e. sound
wave coupling:
– frequency can sweep up from almost zero in reversed shear.

– frequency is lower 0 < Ω <
√

γβ/2/qmin vs. Ω =
√

γβ
(

1+1/2q2
min

)

for

BAE/GAM.
– both low shear gap BAAEs can coexist (similar to RSAE/TAEs)
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interpretation as BAAEs require compressibility effect, i.e. sound
wave coupling:
– frequency can sweep up from almost zero in reversed shear.

– frequency is lower 0 < Ω <
√

γβ/2/qmin vs. Ω =
√

γβ
(

1+1/2q2
min

)

for

BAE/GAM.
– both low shear gap BAAEs can coexist (similar to RSAE/TAEs)

• Kinetic modification of MHD theory is required for new global modes
(Zonca’96, Mikhailovski’98):
– damping is expected to be strong due to phase velocity of acoustic component

close to thermal ion velocity.

– dominant electron plasma is expected to be favorable for BAAE existence.

Gorelenkov: BAAEs in JET and NSTX 20 of 21



Summary (continued)
JET PPPL

• NOVA analysis shows existence of global BAAEs in ICRH JET and NBI NSTX
plasmas.

• Qualitatively NOVA predicts BAAE frequency evolution in agreement with
observations on both tokamaks.

• In NSTX n = 2 BAAE internal structure, frequency and their evolution are in
agreemnt with NOVA.
– MSE measurements on NSTX seem to validate theory and MDH (qmin)

spectroscopy via BAAEs.
– Maybe usefull for burning plasmas, ITER.

• For pure electron plasma (lowest f ) BAAE frequency is above the measured
value in JET by factor ∼ 1.77.

• Need to reconcile theory and experiment:
– may imply local reversed shear witeh qmin = 1.5 but strong indications

exist for q0 = 1,
– possible redistribution of the current drive due to:
∗ MHD activity H-minority transport,
∗ ICRH current drive,
∗ runaway electrons in low density JET plasma.
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Thank you !
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TAEs can transform to BAAE at strong drive

JET PPPL

• Pink shaded area is theoretical BAAE gap
scaling with rotation and n = 2.

• Upper blue curve is core n=2 TAE frequency.

• Red dot is NOVA BAAE frequency for n = 2:
consistent with observations.

• At the start of the discharge TAE are unsta-
ble, f ≃ 100kHz.

• Later TAEs transform to EPM - BAAE:

– Chen’94, Cheng ’95, Gorelenkov ’03.
– Toroidal rotation is strongly sheared and

may affect the mode localization.
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