Predictions and observations of global beta-induced Alfvén-acoustic modes in JET and NSTX

N.N. Gorelenkov, E.D. Fredrickson, S. Kaye, H. Park Princeton Plasma Physics Laboratory, Princeton

H. L. Berk

Institute for Fusion Studies, Austin, Texas

- S. E. Sharapov Euroatom/UKAEA Fusion Assoc., Culham Science Centre, Abingdon, Oxfordshire
- S. A. Sabbagh

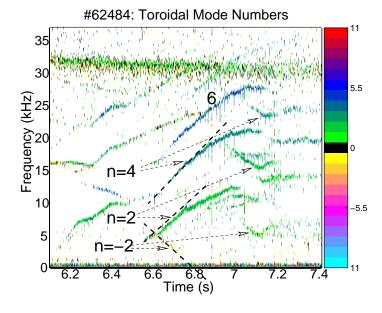
Columbia University, New York

K. Tritz

Johns Hopkins University, Baltimore, Maryland

F. M. Levinton

Nova Photonics, Princeton, New Jersey


and JET EFDA Contributors

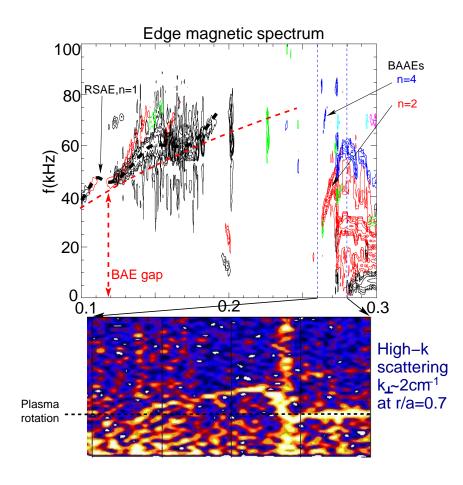
34th EPS Conference on Plasma Physics, July 2-6, Warsaw, 2007

New experimental observations on JET and NSTX motivate low frequency mode study JET=

• JET:

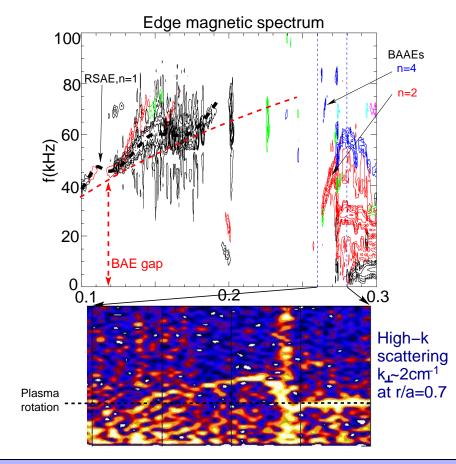
2MW ICRH in low plama density \Rightarrow high H-minority beta:

PPPL


$$egin{aligned} eta_H &\sim au_{se} \sim n_e^{-1}; \ eta_H &\sim eta_{plasma}(\sim 2\%) \end{aligned}$$

 New chirping frequency activity $f_{pl} = 0 - 20kHz$ (for RSAE, Alfvénic cascades $f_{pl} \neq 0$)

- Structure at upper limit (another mode, same *n*).
- Only even *n*'s were observed.


Frequency is much lower than RSAE/TAE frequency, v_A/qR : $\omega_* = 0.5 kHz$ is small

Variety of MHD instabilities are routinely observed in NSTX

- Edge Magnetic spectrum and internal high-k scattering see the same lowf activity as in JET, t = 0.27s.
- only even numbers, sweeping frequency, n = 2, 4
- reversed shear *q*-profile from MSE
- $f_{TAE} = v_A/2qR \simeq 90kHz$
- $t = 0.262sec, n = 2 \mod f$ frequency $f_{lab} \simeq 30 - 50kHz, f_{pl} \simeq f_{lab} - n \times 15 = 0 - 20kHz, \Rightarrow$ too low for TAE for observed n = 2 activity.

Variety of MHD instabilities are routinely observed in NSTX

- Edge Magnetic spectrum and internal high-k scattering see the same lowf activity as in JET, t = 0.27s.
- only even numbers, sweeping frequency, n = 2, 4
- reversed shear *q*-profile from MSE
- $f_{TAE} = v_A/2qR \simeq 90kHz$
- $t = 0.262sec, n = 2 \mod f$ frequency $f_{lab} \simeq 30 - 50kHz, f_{pl} \simeq f_{lab} - n \times 15 = 0 - 20kHz, \Rightarrow too$ low for TAE for observed n = 2 activity.

What are these modes: EPMs, fishbones, KBM, TAEs?

 New class of instabilities called here Beta-induced Alfvén Acoustic Eigenmode (BAAE) helps to study two fundamental MHD waves: Alfvén and acoustic.

JET=

=PPPL

JET=

- **_**PPPL
- New class of instabilities called here Beta-induced Alfvén Acoustic Eigenmode (BAAE) helps to study two fundamental MHD waves: Alfvén and acoustic.
- As opposite to high-*f* instabilities, low-*f* MHD mostly result in radial particle transport:
 - On NSTX bursting low-f modes lead to wide range of losses up to 40% of injected beam ions (Fredrickson'06).

JET:

=PPPL

- New class of instabilities called here Beta-induced Alfvén Acoustic Eigenmode (BAAE) helps to study two fundamental MHD waves: Alfvén and acoustic.
- As opposite to high-*f* instabilities, low-*f* MHD mostly result in radial particle transport:
 - On NSTX bursting low-f modes lead to wide range of losses up to 40% of injected beam ions (Fredrickson'06).
- MHD spectroscopy application for *q*-profile diagnostic:
 - BAAE can complement MHD spectroscopy in low-, medium- β plasma
 - can be the only alternative in high- β plasma, such as in STs.

JET=

=PPPL

- New class of instabilities called here Beta-induced Alfvén Acoustic Eigenmode (BAAE) helps to study two fundamental MHD waves: Alfvén and acoustic.
- As opposite to high-*f* instabilities, low-*f* MHD mostly result in radial particle transport:
 - On NSTX bursting low-f modes lead to wide range of losses up to 40% of injected beam ions (Fredrickson'06).
- MHD spectroscopy application for *q*-profile diagnostic:
 - BAAE can complement MHD spectroscopy in low-, medium- β plasma
 - can be the only alternative in high- β plasma, such as in STs.
- Due to coupling to acoustic branch strong interaction with thermal ions is expected:
 - \Rightarrow strong drive due to fast ions and strong damping due to thermal ions,
 - \Rightarrow potential for energy channeling from beam ions directly to thermal ions (α -channeling).

TALK OUTLINE

- 1. Theory of Alfvén acoustic continuum in ideal MHD
- 2. JET analysis and data comparison
- 3. NSTX analysis and data comparison
- 4. Discussion and Summary

JET:

PPPL

Theory of Alfvén/acoustic continuum

JET=

Simplified shear Alfvén and acoustic coupled equations in low- β , large aspect ratio plasma, low ω_* , (Cheng, Chance '86):

$$\Omega^2 y + \partial_{\parallel}^2 y + \gamma \beta \sin \theta z = 0 \left(Alfvenic \right)$$
(1)

$$\Omega^{2}\left(1+\frac{\gamma\beta}{2}\right)z+\frac{\gamma\beta}{2}\partial_{\parallel}^{2}z +2\Omega^{2}\sin\theta y =0 \left(acoustic\right), \quad (2)$$

where $\Omega \equiv \omega R_0 / v_A$, $y \equiv \xi_s \varepsilon / q$, $\xi_s \equiv \vec{\xi} \cdot \frac{[\mathbf{B} \times \nabla \psi]}{|\nabla \psi|^2}$ and $z \equiv \nabla \cdot \vec{\xi}$, $\hat{k}_{\parallel} \equiv i \partial_{\parallel}$.

Coupling is due to geodesic curvature: *m* Alfvénic and $m \pm 1$ acoustic harmonics.

PPP

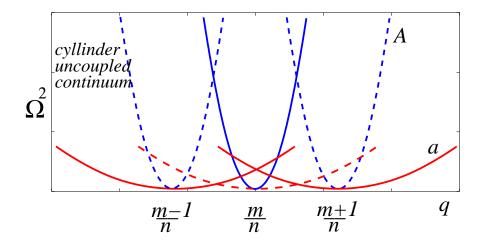
JET

Simplified shear Alfvén and acoustic coupled equations in low- β , large aspect ratio plasma, low ω_* , (Cheng, Chance '86):

$$\Omega^2 y + \partial_{\parallel}^2 y + \gamma \beta \sin \theta z = 0 \left(Alfvenic \right)$$
(1)

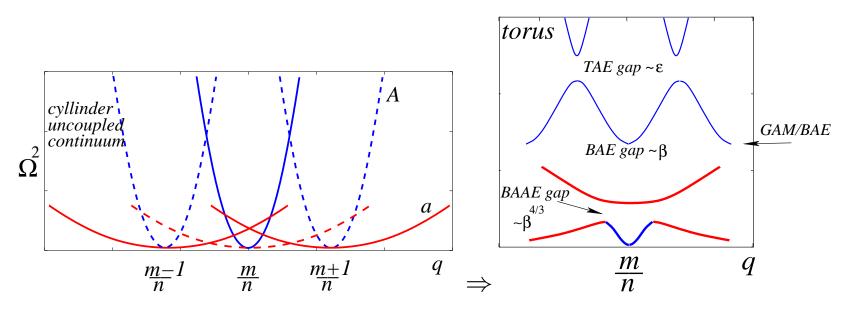
$$\Omega^{2}\left(1+\frac{\gamma\beta}{2}\right)z+\frac{\gamma\beta}{2}\partial_{\parallel}^{2}z +2\Omega^{2}\sin\theta y =0 (acoustic), \qquad (2)$$

where $\Omega \equiv \omega R_0 / v_A$, $y \equiv \xi_s \varepsilon / q$, $\xi_s \equiv \vec{\xi} \cdot \frac{[\mathbf{B} \times \nabla \psi]}{|\nabla \psi|^2}$ and $z \equiv \nabla \cdot \vec{\xi}$, $\hat{k}_{\parallel} \equiv i \partial_{\parallel}$.

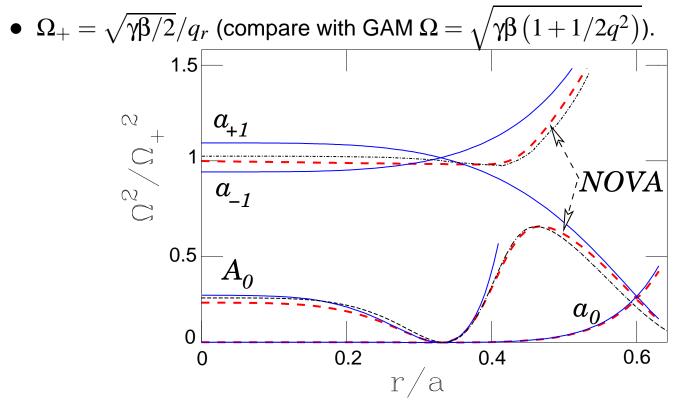

Coupling is due to geodesic curvature: *m* Alfvénic and $m \pm 1$ acoustic harmonics.

Various solutions follows (Winsor'68, Goedbloed'75, Mikhailovski'75,'98, Chu'92, Turnbull '92, Zonca'96, van der Holst'00, Breizman'05, Berk'06):

- Pure acoustic modes (AMs) $\Omega^2 = \frac{1}{2} \gamma \beta k_{\parallel}^2$.
- Pure Alfvénic branch $\Omega^2 = k_{\parallel}^2 + \gamma \beta \left(1 + 1/2q^2\right)$.
- GAMs: $\Omega^2 = \gamma \beta \left(1 + 1/2q^2 \right)$ in the assumption of $\Omega^2 \ge \gamma \beta$.
- Modified shear Alfvén branch $\Omega^2 = k_0^2 / (1 + 2q^2)$ exists for $\Omega^2 \ll \gamma \beta$.


Alfvén/acoustic coupling in toroidal equilibrium (schematic) JET______PPPL

- Alfvén (A) continuum at low frequency: $\Omega^2 = k_{0,\pm 1}^2$
- Acoustic (a) branch $\Omega^2 = \gamma \beta k_{0,\pm 1}^2 / 2(1+\delta)$


Alfvén/acoustic coupling in toroidal equilibrium (schematic)
JET_____PPPL

- Alfvén (A) continuum at low frequency: $\Omega^2 = k_{0,\pm 1}^2 / \left(1 + 2q^2\right)$ (modified)
- Acoustic (a) branch $\Omega^2 = \gamma \beta k_{0,\pm 1}^2 / 2(1+\delta)$ is coupled via $m \pm 1$ sidebands with modified Alfvén continuum (*m* harmonic) due to geodesic curvature and pressure.

Analytic dispersion for Alfvén/acoustic continuum gap is derived

• Consider JET, monotonic q-profile, ten times higher aspect ratio.

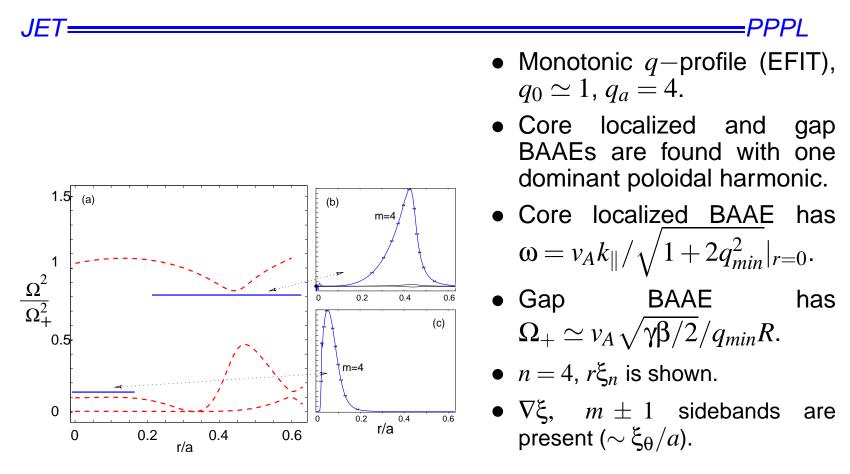
Analytic dispersion - black, dashed lines.

NOVA continuum is in good agreement with theory.

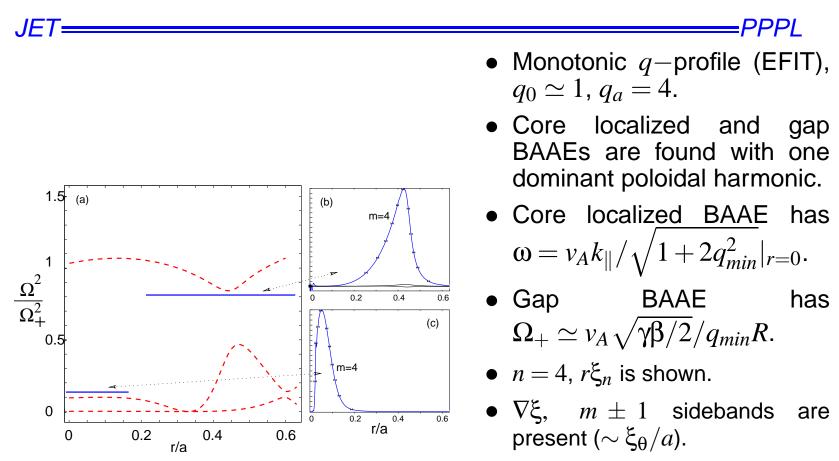
JE7

PPPL

TALK OUTLINE


1. Theory of Alfvén - acoustic continuum in ideal MHD

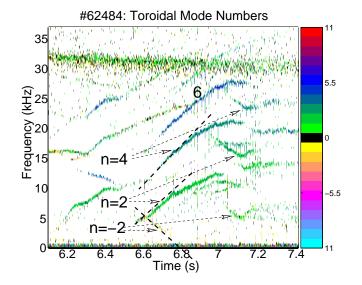
2. JET analysis and data comparison


- 3. NSTX analysis and data comparison
- 4. Discussion and Summary

JET=

JET plasma analysis: two global BAAE modes are found numerically

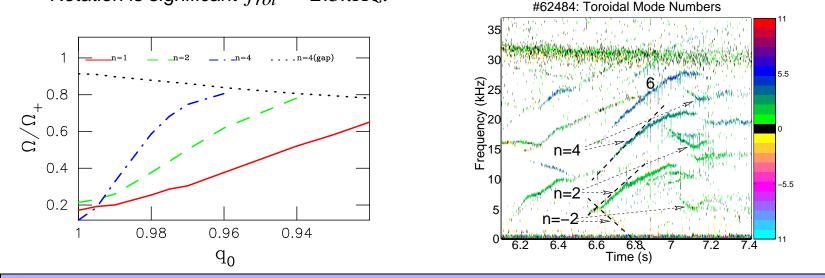
JET plasma analysis: two global BAAE modes are found numerically


BAAE frequency is related to q_{min} value \Rightarrow useful for diagnostic

Relaxing q-profile results in BAAE frequency up-sweep

JET:

- Core BAAE activity is predicted to have sweeping frequency
- Up-chirp is limited by the gap, $\Omega_+ \simeq v_A \sqrt{\gamma \beta/2}/qR$. $\Omega_+ = 31kHz$ for pure electron plasma.
- Rotation is significant $f_{rot} = 2.5 kHz$.


PPPL

Relaxing q-profile results in BAAE frequency up-sweep

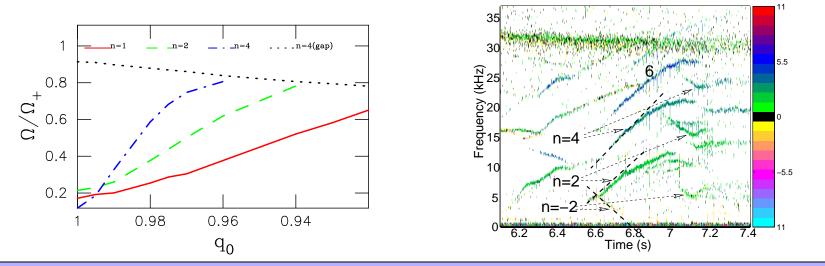
JET=

Core BAAE activity is predicted to have sweeping frequency

- Up-chirp is limited by the gap, $\Omega_+ \simeq v_A \sqrt{\gamma \beta/2}/qR$. $\Omega_+ = 31kHz$ for pure electron plasma.
- Rotation is significant $f_{rot} = 2.5 kHz$.

NOVA predicts $f_{BAAE} = 24.8kHz$ against observed 14kHz, all *n*'s exist ($q_0 = 1$). Possible way to resolve this is to assume local negative shear with $q_{min} = 3/2$: 1) frequency $\sim q^{-1}$, goes down to $\sim 16kHz$, 2) only even m's are expected: $m = nq_{min}$ is integer.

PPP


Relaxing q-profile results in BAAE frequency up-sweep

JET=

Core BAAE activity is predicted to have sweeping frequency

• Up-chirp is limited by the gap, $\Omega_+ \simeq v_A \sqrt{\gamma \beta/2}/qR$. $\Omega_+ = 31kHz$ for pure electron plasma.

NOVA predicts $f_{BAAE} = 24.8kHz$ against observed 14kHz, all *n*'s exist ($q_0 = 1$). Possible way to resolve this is to assume local negative shear with $q_{min} = 3/2$: 1) frequency $\sim q^{-1}$, goes down to $\sim 16kHz$, 2) only even m's are expected: $m = nq_{min}$ is integer.

MSE was available only later in the shot.

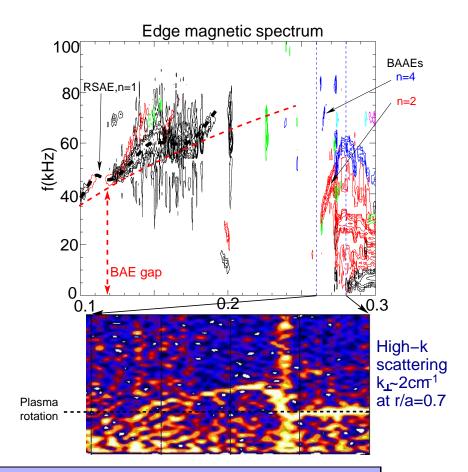
PPP

#62484: Toroidal Mode Numbers

TALK OUTLINE

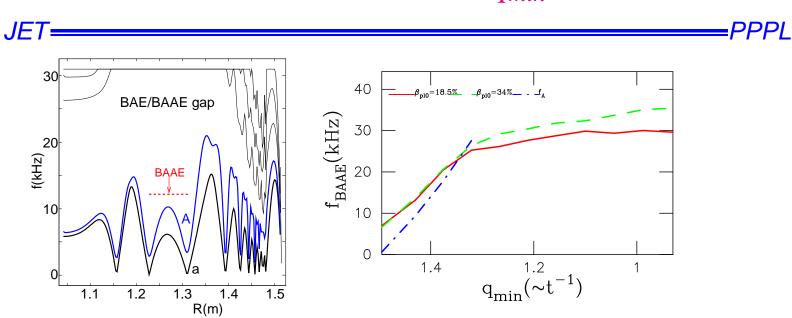
1. Theory of Alfvén - acoustic continuum in ideal MHD

- 2. JET analysis and data comparison
- 3. NSTX analysis and data comparison
- 4. Discussion and Summary


JET=

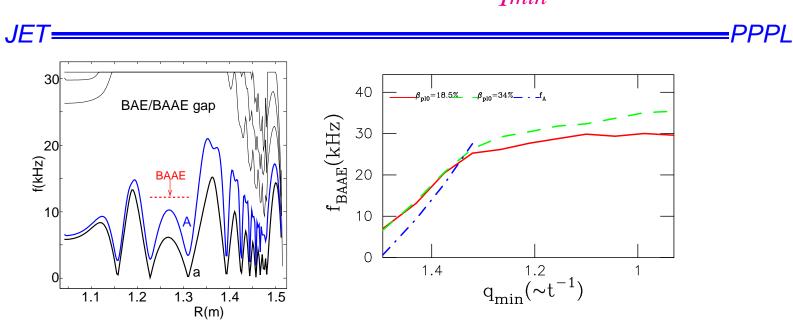
NSTX experiments with MSE address frequency mismatch

- low density $n_e \simeq 3 \times 10^{19} m^{-3}$, $P_{NBI} = 2MW$, $E_{NBI} = 90 keV$.
- 16? channel MSE measures *q* profile (reversed shear).
- Goal is to validate theory.


NSTX experiments with MSE address frequency mismatch JFT

- low density $n_e \simeq 3 \times 10^{19} m^{-3}$, $P_{NRI} = 2MW, E_{NRI} = 90 keV.$
- 16? channel MSE measures q profile (reversed shear).
- Goal is to validate theory.
- oscillations Low frequency (BAAEs) are seen unstable:
 - Characteristic upshift frequency evolution from zero (plasma frame).
 - BAAEs reside in wider BAE gap $f \sim \sqrt{\beta_{pl}}$.
 - High-k component of BAAE at $r/a = 0.7 \Rightarrow$ conversion to KAW (see H.Park poster).

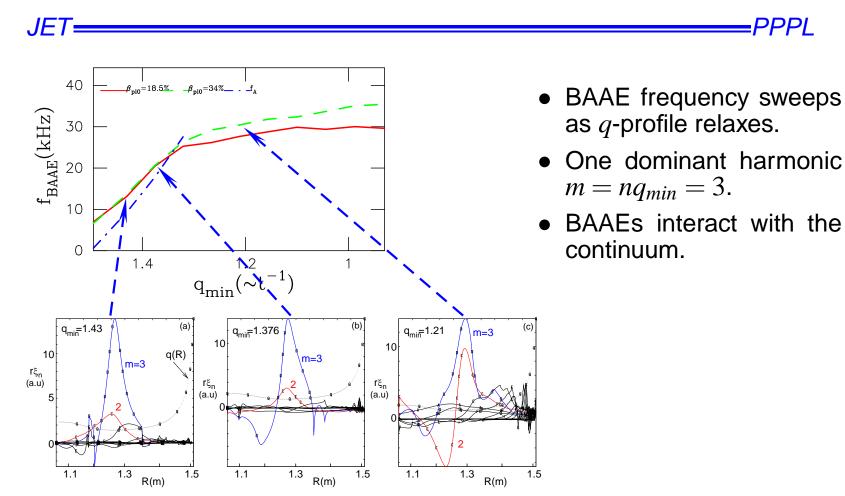
DPP


TAE/RSAEs are suppressed (see E. Fredrickson poster) and BAAEs are excited by beams in high- β NSTX plasmas (typically $\beta_{pl} > \sim 15\%$).

Global BAAE modes are found at q_{min} surface in NSTX

MSE measured inversed q-profile is used in NOVA modeling.

• At high- $\beta_0 = 34\%$, BAE gap opens up to TAE gap.

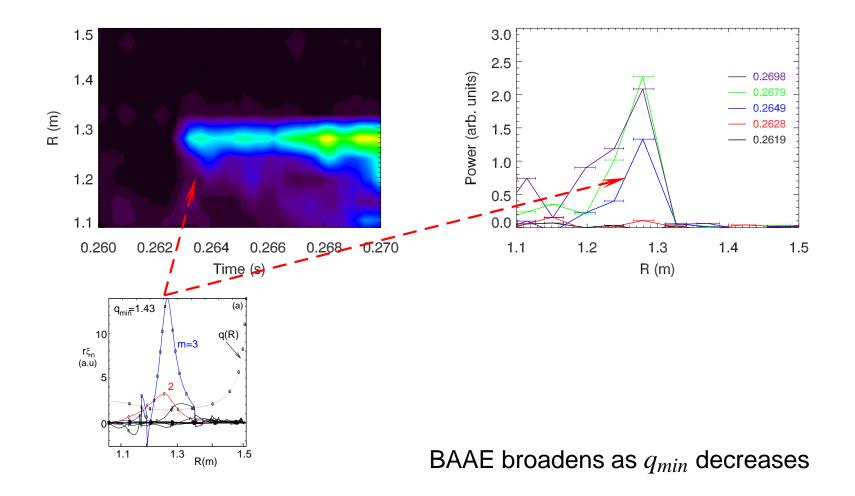


Global BAAE modes are found at q_{min} surface in NSTX

MSE measured inversed q-profile is used in NOVA modeling.

- At high- $\beta_0 = 34\%$, BAE gap opens up to TAE gap.
- Two Alfvén/acoustic (A/a) continuum branches are found with $\Omega^2 < \gamma\beta$, n = 2.
- Low shear BAAE frequency does not depend on β for q close to rational
- f_{BAAE} is close to theory dispersion $f_A = v_A k_{\parallel} / \sqrt{1 + 2q_{min}^2}|_{r=0}$.

NOVA: BAAE broadens radially as q_{min} decreases

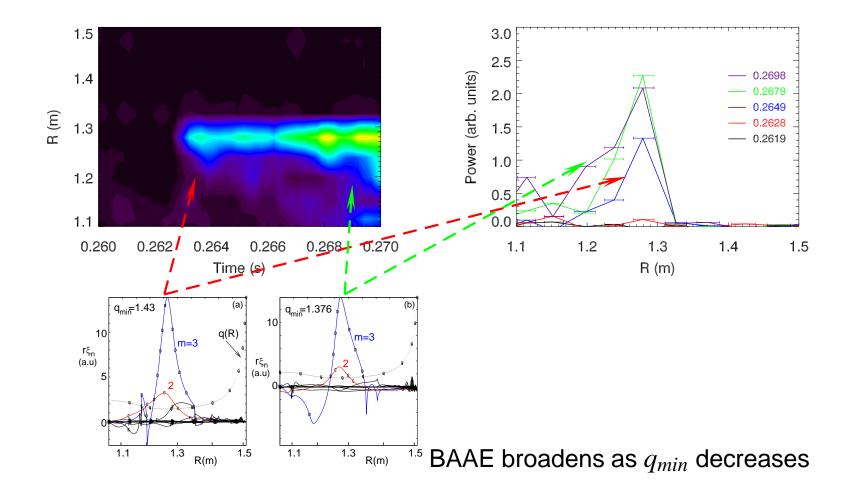


Ultra SXR measures the same radial structure broadening

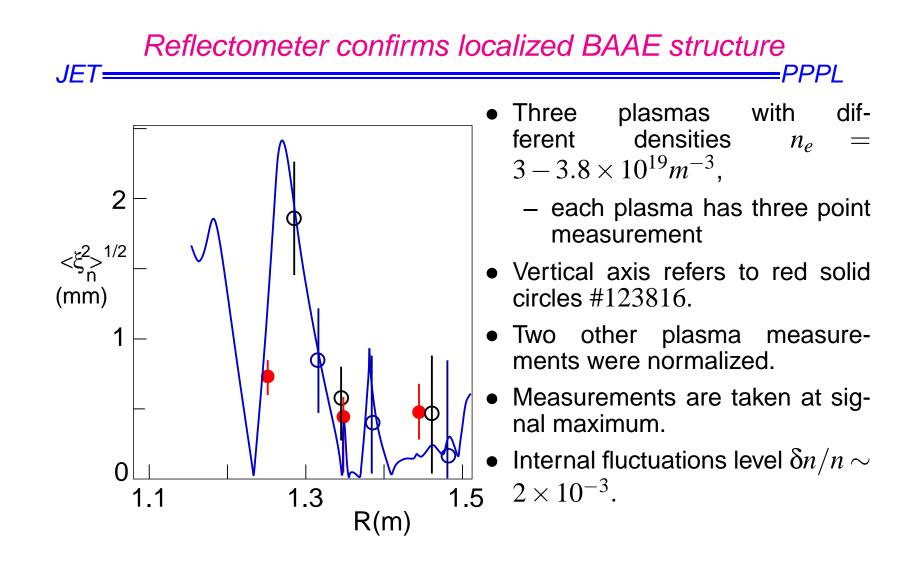
=PPPL

Raw USXR signal (\sim BAAE structure)

Radial profile evolution


JET=

Ultra SXR measures the same radial structure broadening


=PPPL

Raw USXR signal (\sim BAAE structure)

Radial profile evolution

JET=

BAAEs complement RSAEs for MHD spectroscopy

Edge magnetic spectrum

JET

In low- to mediaum-β plasma BAAEs complemets RSAE/TAEs.

DDD

- In high-β plasma BAAEs may be the only tool for MHD spectroscopy.
- Zero BAAE frequency point (plasma frame) indicates rational *q_{min}*.
- BAAE activity is terminated by some IRE at t = 0.275s.

Potential interplay of beam driven instabilities with internal m = 3/n = 2kink-like instability - similar to TAE/sawtooth nonlinear interplay (Bernabei'01, Sharapov'06).

• RSAE/TAE and BAAE inferred q_{min} values are in agreement with MSE measurement.

BAAEs complement RSAEs for MHD spectroscopy

Edge magnetic spectrum E(kHz) =3 **RSAEs** 0.10 0.15 0.20 0.25 0.30 t(sec) \star RSAE 4 🛆 BAAE 3 q_{\min} 2 1 0 0.15 0.2 0.25 0.3 t(s)

In low- to mediaum-β plasma BAAEs complemets RSAE/TAEs.

DPPI

- In high-β plasma BAAEs may be the only tool for MHD spectroscopy.
- Zero BAAE frequency point (plasma frame) indicates rational *q_{min}*.
- BAAE activity is terminated by some IRE at t = 0.275s.

Potential interplay of beam driven instabilities with internal m = 3/n = 2kink-like instability - similar to TAE/sawtooth nonlinear interplay (Bernabei'01, Sharapov'06).

• RSAE/TAE and BAAE inferred *q_{min}* values are in agreement with MSE measurement.

JET

TALK OUTLINE

- 1. Theory of Alfvén acoustic continuum in ideal MHD
- 2. JET analysis and data comparison
- 3. NSTX analysis and data comparison
- 4. Discussion and Summary

JET=

Discussion and Summary

- Theory and numerical analysis show:
 - the existence of geodesic curvature induced gaps in the Alfvén/acoustic continuum below GAM frequency (van der Holst'00),
 - low-n global beta-induced Alfvén/acoustic eigenmodes BAAE are found,
 - BAAEs exist in finite beta plasma within wider BAE gap.

Discussion and Summary

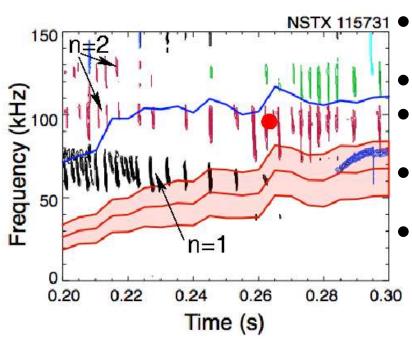
- Theory and numerical analysis show:
 - the existence of geodesic curvature induced gaps in the Alfvén/acoustic continuum below GAM frequency (van der Holst'00),
 - low-n global beta-induced Alfvén/acoustic eigenmodes BAAE are found,
 - BAAEs exist in finite beta plasma within wider BAE gap.
- BAAEs are different from BAEs (Heidbrink-Turnbull-Chu-Huysmans) interpretation as BAAEs require compressibility effect, i.e. sound wave coupling:
 - frequency can sweep up from almost zero in reversed shear.
 - frequency is lower $0 < \Omega < \sqrt{\gamma \beta/2}/q_{min}$ vs. $\Omega = \sqrt{\gamma \beta \left(1 + 1/2q_{min}^2\right)}$ for BAE/GAM.
 - both low shear gap BAAEs can coexist (similar to RSAE/TAEs)

Discussion and Summary

- Theory and numerical analysis show:
 - the existence of geodesic curvature induced gaps in the Alfvén/acoustic continuum below GAM frequency (van der Holst'00),
 - low-n global beta-induced Alfvén/acoustic eigenmodes BAAE are found,
 - BAAEs exist in finite beta plasma within wider BAE gap.
- BAAEs are different from BAEs (Heidbrink-Turnbull-Chu-Huysmans) interpretation as BAAEs require compressibility effect, i.e. sound wave coupling:
 - frequency can sweep up from almost zero in reversed shear.
 - frequency is lower $0 < \Omega < \sqrt{\gamma \beta/2}/q_{min}$ vs. $\Omega = \sqrt{\gamma \beta \left(1 + 1/2q_{min}^2\right)}$ for BAE/GAM.
 - both low shear gap BAAEs can coexist (similar to RSAE/TAEs)
- Kinetic modification of MHD theory is required for new global modes (Zonca'96, Mikhailovski'98):
 - damping is expected to be strong due to phase velocity of acoustic component close to thermal ion velocity.
 - dominant electron plasma is expected to be favorable for BAAE existence.

Summary (continued)

JET:


plasmas.

NOVA analysis shows existence of global BAAEs in ICRH JET and NBI NSTX

- Qualitatively NOVA predicts BAAE frequency evolution in agreement with observations on both tokamaks.
- In NSTX n = 2 BAAE internal structure, frequency and their evolution are in agreemnt with NOVA.
 - MSE measurements on NSTX seem to validate theory and MDH (q_{min}) spectroscopy via BAAEs.
 - Maybe usefull for burning plasmas, ITER.
- For pure electron plasma (lowest f) BAAE frequency is above the measured value in JET by factor ~ 1.77 .
- Need to reconcile theory and experiment:
 - may imply local reversed shear with $q_{min} = 1.5$ but strong indications exist for $q_0 = 1$,
 - possible redistribution of the current drive due to:
 - * MHD activity H-minority transport,
 - * ICRH current drive,
 - * runaway electrons in low density JET plasma.

Thank you !

TAEs can transform to BAAE at strong drive

- Pink shaded area is theoretical BAAE gap scaling with rotation and n = 2.
 - Upper blue curve is core n=2 TAE frequency.
 - Red dot is NOVA BAAE frequency for n = 2: consistent with observations.
 - At the start of the discharge TAE are unstable, $f \simeq 100 kHz$.
 - Later TAEs transform to EPM BAAE:
 - Chen'94, Cheng '95, Gorelenkov '03.
 - Toroidal rotation is strongly sheared and may affect the mode localization.

JET: