Gyrocenter shift of low temperature plasma and retrograde motion of arc discharges

K.C. Lee

Oct. 1, 2007, PPPL

Contents

- 1. Retrograde motion of arc discharges
- 2. Introduction to gyrocenter shift
- 3. Generalization for high collisional plasmas
- 4. Comparison with experiments
- 5. Conclusion and NSTX applications

Retrograde motion of arc cathode

- ► retrograde motion was noticed by Stark (1903)
- ► no satisfactory explanation despite numerous attempts.
 - ► mysterious cathode spot of arc [Raizer, 1991] (uniquely complex object)

- -why do spots split?
- -why do they run?
- -why such tremendous current density ($\sim 10^8 \text{ A/cm}^2$)
- -why move opposite direction (retrograde motion) under B-field

100 year old puzzle of the cathode spot

- no retrograde motion at B-filed > 1 T
- etc. => Most of the list can be explained by "gyrocenter shift"
- recent approaches on retrograde motion
 - Hall electric field => only linear dependency of gas pressure (91')
 - super position of self and external magnetic fields => only when B>1T (02')

Gyrocenter shift by charge exchange

Gyrocenter shift and drift velocity

From a fluid equation of motion ; $J \times B = n_i R_{av} S_i^m$

momentum sink by charge exchange

$$J_{x}^{GCS} = \frac{m_{i}n_{i}n_{n}}{B} < \sigma_{cx}v_{i} > (\frac{E}{B} - \frac{\nabla p}{qBn_{i}} + \frac{T_{i}\nabla n_{n}}{qBn_{n}}) \quad \begin{array}{l} \text{[K.C. Lee, Physics of Plasmas, 13, 062505} \\ \text{(2006)]} \end{array}$$

[K.C. Lee, Physics of

drift velocity

for low temperature / high density

- => high collision rate with neutrals / short mean free path
- ⇒ drift velocity needs modification (generalization) for including high collisional cases

Generalization (I) of drift velocity

$$F_{x} = qE - qv_{D}B - \nabla p/n_{i}$$

$$(v_{D}: drift velocity)$$

$$v_{x} = \mu(E - v_{D}B - \nabla p/qn_{i})$$

$$(\mu: mobility)$$

$$F_{y} = qv_{x}B$$

$$\mathbf{v}_{\mathrm{D}} = \mu^{2} B (E - \mathbf{v}_{D} B - \nabla p / q n_{i})$$

$$v_D = \frac{1}{1 + r_L^2 / \lambda_{cx}^2} \left(\frac{E}{B} - \frac{\nabla p}{qBn_i} \right)$$

- only ion-neutral collisions count
- ion-ion collisions are averaged out
- ions are under same influence of E-field & B-field (Lorentz force)
- but collisions with neutrals make new start of accelerations
- new formula is also valid for low collision limit

Generalization (II) of gyrocenter shift

general formula for the gyrocenter shift

$$J_{x}^{GCS} = \frac{m_{i}n_{i}n_{n}}{B} < \sigma_{cx}v_{i} > \left[\frac{1}{1 + r_{L}^{2} / \lambda_{cx}^{2}} \left(\frac{E}{B} - \frac{\nabla p}{qBn_{i}}\right) + \frac{T_{i}\nabla n_{n}}{qBn_{n}} e^{-r_{L}/\lambda_{cx}}\right]$$

Calculation of electric field in arc discharge

- no background E-field
- constant n_i (5x10²²/m³)
- constant T_i (0.5 eV)
- B = 0.1 T
- gas pressure : 100 Torr (Argon)
- gap :16.5 mm
- n_n is an exponential function with its gradient approach zero at middle of the discharge
- ⇒ reversed electric field is formed
- \Rightarrow E_x vanishes when $n_n > \sim 10^{21}/m^3$
- ► cathode sheath : massive ionizations take place (~µm) where rapid decrease of neutral and increase of ion
- $ightharpoonup n_n(0)$ is proportional to the gas pressure

Calculation with arc column electric field

- ► higher neutral density → higher column electric field (constant current)
- ⇒ high gas pressure → positive electric field in front of cathode low gas pressure → negative electric field in front of cathode
- ► negative electric field (seems unnatural) : gyrocenter shift is a process of putting ions in a direction which is independent of electric force

Comparison of calculation with experiment

[K.C. Lee, PRL, Vol 99, 065003 (2007)]

Conclusion

$$J_{x}^{GCS} = \frac{m_{i}n_{i}n_{n}}{B} < \sigma_{cx}v_{i} > \left[\frac{1}{1 + r_{L}^{2} / \lambda_{cx}^{2}} \left(\frac{E}{B} - \frac{\nabla p}{qBn_{i}}\right) + \frac{T_{i}\nabla n_{n}}{qBn_{n}} e^{-r_{L}/\lambda_{cx}}\right]$$

 retrograde motion of cathode spot is directly related to the ion drift velocity calculated from the generalized equation of gyrocenter shift

Future work of gyrocenter shift

- **►** coming APS meeting presentations
- ► saturated electric field vs. ambipolar electric field
 - => plasma transport by gyrocenter shift?

Application to NSTX research

- generalized formula should be used for passing particles (x-point)
- measurement of neutral density profile using existing diagnostics : D_{β} -emission (mid plane) and diverter camera (x-point)
- measurement of neutral density profile using <u>new</u> diagnostics (?):
 such as Laser Induced Ionization (LII)

