

Mon 25th Feb 2008 reporting meeting – XP810 and 801 report:

Error field and rotation sensitivity of 2/1 NTM onset and decay thresholds

R J Buttery¹, S. Gerhardt², R. J. La Haye³, S. Sabbagh⁴ and the NSTX team

¹EURATOM/UKAEA Fusion Association, ²PPPL, NJ, USA ³General Atomics, USA ⁴Columbia University, NY

UKAEA

Work conducted under the European Fusion Development Agreement and jointly funded by EURATOM, the UK EPSRC, and US DOE.

Basis of NSTX NTM rotation experiments...

DIII-D & NSTX show strong rotation dependence in NTM physics:

q=2 Alfvén Mach number

To explore:

- Do error fields lower thresholds further?
- How does rotation impact thresholds?
 - Rotation or rotation shear?
 - Triggering physics or underlying stability?
- Explore with mode onset and decay experiments on NSTX
 - n=1 and n=3 brake plasma differently

Later (if reverse Ip operation possible):

- Does counter rotation stabilise mode or not?

UKAEA XP810 and 801 report, Feb 08 🛛 slide 2 🚽 Buttery, Gerhardt, La Haye, Sabbagh 🧱

Part II Goal : Restabilization of Mode (SPG)

- Ramp Down Beam Power, and thus β_{p} , to restabilize the mode.
 - Sensitive Test of Small Island Physics.
- One good example of doing this last year (see below).
 - Stay in H-mode throughout rampdown (similar experiment in DIII-D this June).
 - Restabilize the mode before it locks.
 - Scan n=3 braking and I_p during rampdown

Technical Progress – day 1

- Lot of problems with machine conditions:
 - Poor conditions required 3 beam operation
 - Attempts with 2 beams & optimisation of elongation, but mode struck too early...
 - Beam C limited by SPA pick up (fixed by mid-afternoon)
 - Got 3 points without SPAs, then 2 more with n=3...
 - Then central stack problem cost 1.5 hours
 - Got one final point with 3 beam mode onset...

>> 3 beam target made for ramp-down but not optimised to provide ramp-down data...

Technical Progress – day 2

- Started with target from day 1...
 - Beam A failed (MSE) for whole morning
 - We persevered with development of a lower Ip 2 beam scenario
 - has limited scope of scans, but allowed us to get scenarios working while MSE beam fixed
 - Provided some tests of ramp down techniques for XP801
 - \checkmark Then obtained 4 point scan with n=1 field
 - Further tests for ramp-down with n=1 error correction
 - But unknown error field could not avoid locking
 - Lost 1.2 hours to earth fault on centre column
 - ✓ Then managed 2 point n=1 scan with n=3 applied
 - (one or two vertical stability and RTEFIT problems)
- General point:
 - Using a lot of flux swing (not yet that well conditioned) and 2 beam mode $\beta_{\rm N}$ threshold quite low (limited scan scope)

UKAEA XP810 and 801 report, Feb 08 slide 5 Buttery, Gerhardt, La Haye, Sabbagh 🧱

Physics progress summary

- Scenario redeveloped for 2 beam and 3 beam operation
- Ramp-down techniques implemented but mode locking problem
 - Possibly related to machine conditions and intrinsic error fields
- 4 point 2/1 NTM onset scan obtained vs. n=1 field
 - Error fields act to lower rotation and decrease NTM β threshold
 - Some uncertainties in intrinsic error level
- 2 point scan of n=1 field obtained while modest n=3 braking
 - n=1 braking has an effect in lower thresholds here...
 - ...analysis required to determine differences cf zero n=3
 - scope very limited by available time higher n=3 & n=1 levels desired to explore key question – is error sensitivity worse at low ω?

Combined data does provide useful extension of 2007 database to resolve questions of role rotation vs rotation shear...

Preliminary results – mode onset

- Preliminary onset scan obtained with n=1 fields
 & 2 beam recipe...
- ...but very limited data with n=1 applied when lowering rotation from n=3 braking...
 - (this was main objective)
- Nevertheless, useful extension of NSTX database to get at rotation vs. rotation shear issue...

Machine conditions introduced some scatter...

Nevertheless, considerable variation in target rotation profiles before mode...

...and superb CER data (best RJB's ever seen!)

UKAEA XP810 and 801 report, Feb 08 🛛 slide 9 🚽 Buttery, Gerhardt, La Haye, Sabbagh 🎉

Key outstanding goals

- XP 801 ramp-downs for NTM self-stabilisation point
 - Need to achieve ramp-down with dynamic error correction
 - Then scan ramp-down vs rotation using n=3 and n=1 braking
- XP 810 NTM onset threshold in β_N
 - Need to resolve issues of intrinsic error n=1 field to understand contribution to that scan
 - Need to extend scan with n=3 braking to get better variation, with higher n=3 braking, and wider range of n=1 fields

This would greatly benefit from improved machine conditions (\rightarrow longer time window and higher β threshold) and dynamic error correction (\rightarrow to remove / measure n=1 fields)

- Upcoming XP by SG/JM will provide latter; continued ops - former

Propose completion day after that, shared between 801 & 810

🛛 🔣 🗛 🗛 XP810 and 801 report, Feb 08 🛛 slide 10 🛛 Buttery, Gerhardt, La Haye, Sabbagh 🧱

Many thanks to the NSTX team for hosting us and working hard to help our experiments work.

UKAEA XP810 and 801 report, Feb 08 🛛 slide 11 🚽 Buttery, Gerhardt, La Haye, Sabbagh 🎉

UKAEA XP810 and 801 report, Feb 08 🛛 slide 12 🛛 Buttery, Gerhardt, La Haye, Sabbagh 🐹

2/1 NTM co vs counter rotation dependence

DIII-D: shows strong rotation dependence in 2/1 NTM $\beta_{\rm N}$ limit

- But what is physics?

- Does counter rotation stabilise mode?
- Is threshold dependent on rotation shear relative to magnetic shear (á la theory)
- Need to test and explore this important result...

UKAEA XP810 and 801 report, Feb 08 🛛 slide 13 🖉 Buttery, Gerhardt, La Haye, Sabbagh 🎉

Part A: Error field effects on 2/1 NTM β limit

JET and DIII-D show error fields can lower 2/1 TM threshold

NSTX experiment: up to 1 shift

 Lowering of β_N limit for 2/1 NTMs with 100%co NBI

 Similar effect on DIII-D with 65:35 mix of co:counter NBI (low torque)

Need to probe further:

- Error field expected to trigger modes more easily at low rotation (???)
- Need to understand correction requirements in medium β_{N} plasmas
- Helps understand NTM physics & rotation role

Ramp β_N to trigger modes (ref shot 123876); scan error field level shot to shot. Repeat scan with high n=3 field applied to explore braking

(May be desirable to compare with an Ohmic version of the experiment... see next) (Some points with EF ramps at constant β_N also desirable).

Key issues NSXT can shed light on

Part A

Part B

- NSTX can probe error field effects
 - To see if increased sensitivity at low rotation
- NSTX can explore rotation profile effects
 - Distinguish between rotation and rotation shear models?
 - Assisted by varying mix of n=1 & n=3 braking
- NSTX can readily address the counter rotation question
 - Does trend go up or down in counter direction?
 - Just reverse Bt and Ip... (later, but covered by this XP)

Part B (later): counter Bt and Ip scans

Recall previous NSTX and DIII-D scans:

- Simple technique is to reverse Ip and Bt to get strong counter data
 - Key test of underlying theory governing rotation dependence

q=2 Alfvén Mach number

<u>NSTX:</u> about 0.5 shifts, counter B_T and I_P

Apply ramps in β to trigger 2/1 NTM (ref shot 123876)

May need co- comparison, and vary rotation with n=3...

UKAEA XP810 and 801 report, Feb 08 🛛 slide 16 🛛 Buttery, Gerhardt, La Haye, Sabbagh 🧱