

Summary of XP813 – Momentum Transport Studies Using n=3 Non-Resonant Braking

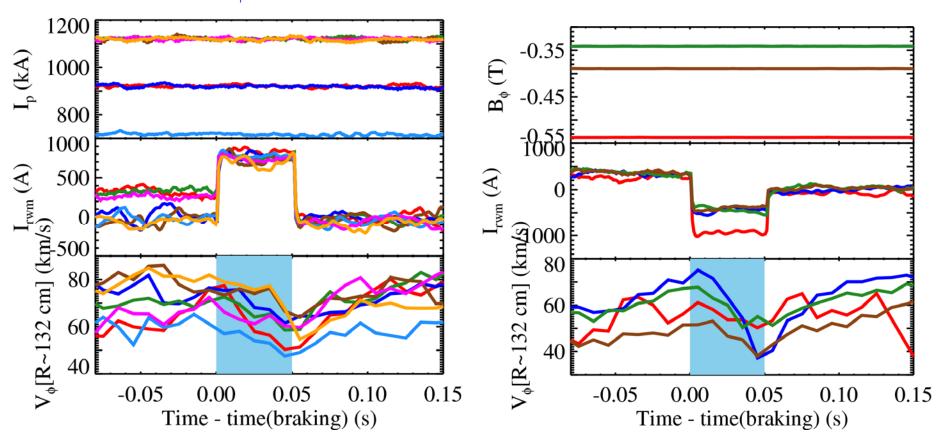
W.M. Solomon

Momentum Transport Studies Using n=3 Non-Resonant Braking

Aim:

Continue characterizing NSTX momentum transport

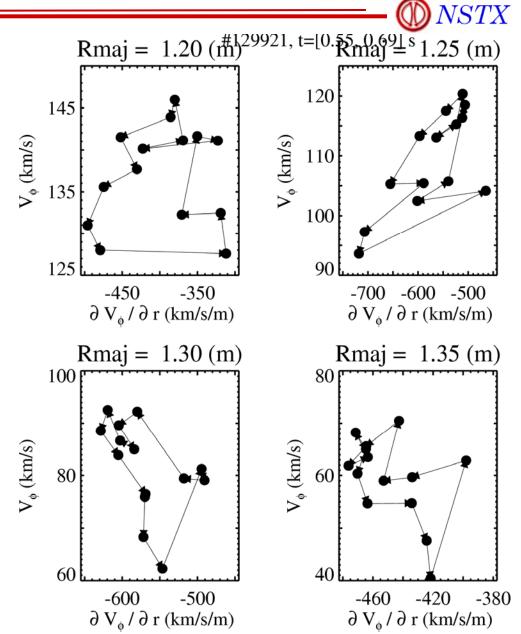
- Experimentally distinguish turbulent pinch theories
 - ✓ Achieved large variation in density scale length, depending on when in the discharge the perturbation was applied
- Look at I_p and B_{ϕ} variation in momentum transport (resolved into χ_{ϕ} and V_{pinch})
 - ✓ Successfully completed both I_p and B_b scan


Technique:

 Use n=3 non-resonant magnetic perturbations to distort the rotation profile, allowing for separation of the roles of momentum diffusion vs non-diffusive (pinch).

Acquired Excellent Data for Both I_p and B_t scans

- TRANSP analysis required to investigate rotation relaxation following perturbation
 - Does χ_{ϕ} (and V^{pinch}) scale like χ_{i} or does e- transport matter?



n=3 Perturbation Provided Necessary Non-Local Distortion to Rotation Profile

 Simple model for momentum flux

$$\Gamma_{\phi} = -mnR \left(\underbrace{\chi_{\phi} \frac{\partial V_{\phi}}{\partial r}}_{\text{diffusion}} - \underbrace{V_{\phi} V_{\phi}^{\text{pinch}}}_{\text{convection}} \right)$$

- Elliptic tracks of dV_{ϕ}/dr vs V_{ϕ} indicate that determination of χ_{ϕ} and V_{ϕ}^{pinch} possible.
 - Must change V_{\phi} independently of dV_{\phi}/dr to avoid collinearity of data set

