

June 2008 reporting meeting – XP810 and 801 experiment:

801: Marginal island width for the 2/1 NTM

810: Error field and rotation sensitivity of 2/1 NTM onset and decay thresholds

R J Buttery¹, **S. Gerhardt²**, **R. J. La Haye³**,

M. Maraschek⁴, S. Sabbagh⁵ and the NSTX team

¹EURATOM/UKAEA Fusion Association, ²PPPL, NJ, USA ³General Atomics, USA ⁴Max Planck IPP, Germany ⁵Columbia University, NY

UKAEA Work conducted under the European Fusion Development Agreement and jointly funded by EURATOM, the UK EPSRC, and US DOE.

New experiments in June

- Take advantage of improved machine conditions:
 - Perform ramp-downs and try to keep mode rotating and in H mode
 - + Explore rotation effect with n=3 braking
 - Avoid strong n=1 error fields (locked modes)
 - Explore mode onset physics
 - Measure n=1 impact on beta limit (='penetration' threshold?) at different rotations (by varying n=3 brakings)
 - \rightarrow aim for four corners, then fill in if possible

Progress on June day on NSTX

- Morning focussed on ramp-down:
 - Troubled by evolving conditions as lithium "disappeared"
 - Mode threshold raised through morning
 - Did achieve some ramp-downs
 - H->L transitions prevented clean restabilization.
 - Tricks to drop H->L threshold did not help
- Afternoon switched to onset variation study:
 - Had to further optimise to strike mode (reduce centre stack gas)
 - Got to reasonable & reproducible target with no braking
 - Started scan with n=3 ramp (after intervention for GIS problem)
 - Problems with machine operation to get back n=3 shot
 - Finally got in the zone
 - Reliable 2/1 modes with various n=1 & n=3 fields...

UKAEA XP810 and 801 report, Feb 08 🛛 slide 3 🚽 Buttery, Gerhardt, La Haye, Sabbagh 🧱

Rampdown Studies had Trouble with H->L transition

- Li changes everything...first shot had a beautiful mode, and then, over the next few shots, it went away.
- Developed a scenario with D₂ glow that allowed the mode to strike fairly reliably.
- Modes were NOT always locking, which was the problem in Feb. without EF correction.
- Mode amplitude clearly decreased as β_P was reduced.
- However, plasmas fell out of H-mode before mode was restabilized-> dramatic changes in profiles, followed by locking.
- Tried to make a figure...but couldn't access the data this AM.

NSTX high-k, high-d shape is essentially always metastable to the 2/1 mode

UKAEA XP810 and 801 report, Feb 08 🛛 slide 4 🚽 Buttery, Gerhardt, La Haye, Sabbagh 🐹

Results

Got reasonable scan with currents at a level that "did something":

Mixed n=3 and n=1

- n=1 and n=3 may brake plasma differently
- Work now to deconvolve effects...
 - The above are 'good shots' for data analysis, please

UKAEA XP810 and 801 report, Feb 08 🛛 slide 5 🚽 Buttery, Gerhardt, La Haye, Sabbagh 🎉

Clear effects in raw data

• Key to deconvolve is rotation and rotation shear effects

• Also, a simple 'error field threshold' measurement should be possible, and its scaling with plasma braking...

UKAEA XP810 and 801 report, Feb 08 🛛 slide 6 🚽 Buttery, Gerhardt, La Haye, Sabbagh 🎉

Summary

- A tricky day technically especially to tune conditions for below experiments and get lithium out
- NTM ramp-down studies could not avoid H-L
 - Look for the 2/1 mode in low-d, high-b plasmas (database).
 - These may provide a lower H->L threshold, and allow rampdown.
- But n=1 and n=3 fields observed to have clear effects on plasmas and induce/lower thresholds for modes
 - 'Four corners' of scan obtained
 - Work now planned to deconvolve effects of n=1, n=3, β_{N} , rotation and rotation shear
 - Part B still bid NTM trends with rotation sign...

🛛 🖳 🗛 🗛 🗛 🗛 🗛 Web Market Ma

Basis of NSTX NTM rotation experiments...

DIII-D & NSTX show strong rotation dependence in NTM physics:

To explore:

- Do error fields drop thresholds more at low rotation?
- How does rotation impact thresholds?
 - Rotation or rotation shear?
 - Triggering physics or underlying stability?
- Explore with mode onset and decay experiments on NSTX
 - n=1 and n=3 brake plasma differently

Basis of NSTX NTM rotation experiments...

DIII-D & NSTX show strong rotation dependence in NTM physics:

q=2 Alfvén Mach number

To explore:

- Do error fields drop thresholds more at low rotation?
- How does rotation impact thresholds?
 - Rotation or rotation shear?
 - Triggering physics or underlying stability?
- Explore with mode onset and decay experiments on NSTX
 - n=1 and n=3 brake plasma differently

Later (if reverse Ip operation possible):

Does counter rotation stabilise mode or not?

Key issues NSTX can shed light on

Part A

Part B

- NSTX can probe error field effects
 - To see if increased sensitivity at low rotation
- NSTX can explore rotation profile effects
 - Distinguish between rotation and rotation shear models?
 - Assisted by varying mix of n=1 & n=3 braking
- NSTX can readily address the counter rotation question
 - Does trend go up or down in counter direction?
 - Just reverse Bt and Ip... (later, but covered by this XP)

Lots of problems in February "restart"

- Beam C and then A failures
- Central stack problem
- Earth fault
- Error field correction not functioning → modes locked
 - → Got about 0.5 days machine time
 - Ramp down element unsuccessful
 - Mode onset study 'made a start'
 - 4 point n=1 study
 - 2 points with n=3 but at low level

Preliminary results – mode onset

- Preliminary onset scan obtained with n=1 fields
 & 2 beam recipe...
- ...but very limited data with n=1 applied when lowering rotation from n=3 braking...
 - (this was main objective)
- Nevertheless, useful extension of NSTX database to get at rotation vs. rotation shear issue...

 β_N vs q~2 rotation at 21 onset with MSE

Nevertheless, considerable variation in target rotation profiles before mode...

Although variations in machine conditions and reconstruction proving problematic... (W.I.P.)

UKAEA XP810 and 801 report, Feb 08 🛛 slide 13 🖉 Buttery, Gerhardt, La Haye, Sabbagh 🎉