#### Simulations of the effect of beam driven Global Alfvén Eigenmodes on electron transport

N.N. Gorelenkov

Princeton Plasma Physics Laboratory, Princeton

with contributions from A. Boozer, L. Delgado-Aparicio, E. Fredrickson, J. Menard, D. Stutman, K. Tritz, R. White

NSTX Monday meeting, PPPL, July 14th, 2008



### Motivation



 e-transport seems to be driven by sub-cyclotron modes - D. Stutman, recent presentations

#### - GAEs are candidates

- location of  $T_e$ -flat region is  $r/a < \sim 0.25$  inside of  $q_{min}$  surface !!!
- can utilize theory developed for GAEs/CAEs, ORBIT
  - aim at heat diffusion coefficient on the order  $> 2m^2/sec$ ,
  - what is required mode amplitude.

# OUTLINE

- Experimental and Theoretical properties of GAE instability
- ORBIT simulation

## Experimental Observations and Theory

- Experiment:
  - Multiple sub-ion cyclotron frequency instabilities are observed in NSTX.
  - Frequency typically scales with Alfvén speed and dispersion.
  - Modes are driven by fast super Alfvénic ions.
  - GAE frequencies intersect, polarization  $\delta B_{\perp} > \delta B_{\parallel}$
  - CAE frequencies do not intersect, polarization  $\delta B_{\parallel} > \delta B_{\perp}$ .
- Theory:
  - GAEs: Appert'82, in NSTX discovered by Fredrickson, with input from HYM (E.Belova).
  - Mode identification: shear and/or compressional (magnetosonic)
     AEs is easier in NSTX due to instability spectrum peak separation.
  - Instability properties can be used to diagnose plasma: fast ion distribution, q-profile.
  - damped on electrons if  $\omega < \omega_{ci}$ : may expect effects on electrons.

## Experimental features of GAE instabilities



Dashed curves are GAE dispersion  $\omega_{GAE} \simeq v_{A0}(m - nq_0)/q_0 R$ .

- Observed frequencies of different (m,n) modes intersect
   ⇒ characteristic of shear Alfvén Eigenmodes.
- We identified them as Global Alfvén Eigenmodes (GAE), (APPERT, 1982).
- GAEs (center) become stable after sawtooth, whereas CAEs (edge) become unstable.

N.N.Gorelenkov, E. Fredrickson, E. Belova et.al., iaea'02, NF'03.

## Alfvén continuum and GAE structure from NOVA



 $\omega_{GAE}\simeq v_{A0}(m-nq_0)/q_0R.$ 

- Many radial modes can exist below each A-continuum line
  - Frequencies are shifted downward from the continuum up to 30%.

## GAEs are localized in the core due to density and q-profiles



Standard continuum damping calculation produces damping rate to the order of magnitude  $\Im \delta \omega / |\omega_0| \sim (x_2/x_s)^{2m+\delta}$  is small for large to medium *m*'s (Gorelenkov, NF, '03).

GAE mode radial width is proportional to  $m^{-1}$ .

#### HYM simulations show localized GAEs at low-n (E.Belova)



- Mode has characteristics of GAE with n = 4, m = 2, frequency is consistent.
- Large  $k_{\parallel}$ , significant compressional polarization:  $\delta B_{\parallel} \sim \delta B_{\perp}/3$
- Qualitatively the same poloidal, radial structure as in NOVA

## Comparison CAE/GAE instability properties

| $\textbf{mode} \rightarrow$ | CAE                                                                                                                              | GAE                                                                              |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| dispersion                  | $\omega = k v_A \simeq m v_A / \kappa r$                                                                                         | $\omega = k_{\parallel 0} v_{A0}$                                                |
| localization                | LFS, plasma edge, $r/a \ge 1/2$                                                                                                  | plasma center                                                                    |
| resonance $v_{\parallel}$   | $rac{arphi_{\parallel}}{arphi_A} \geq rac{k_{\perp}}{k_{\parallel}} \left( rac{\omega_c}{\omega} - 1  ight)$                  | $rac{v_{\parallel}}{v_A} \geq rac{\omega_c}{\omega} - 1$                       |
| $k_{  }$                    | $k_{\parallel}\simeq \left( \pmb{\omega}_{\!\scriptscriptstyle C} - \pmb{\omega}  ight) / v_{\parallel b}$ , $k_{\parallel} > 0$ | $k_{\parallel}\simeq \omega_c/v_{b0},k_{\parallel}>0$                            |
| drive: $v_{\perp}$          | $rac{v_{\perp}}{v_A}rac{\omega}{\omega_c}\geq 1$                                                                               | $rac{k_{\perp}}{k_{\parallel}}rac{v_{\perp}}{v_A}rac{\omega}{\omega_c}\geq 2$ |

Cyclotron resonance with beam ions  $\omega - l\omega_{cD} - k_{\parallel}v_{\parallel b} \simeq 0, \ l = \pm 1.$ 

## Employ ORBIT to study e-transport due to GAEs



**ORBIT** ideal MHD perturbation:

$$\delta B = \nabla \times \alpha \mathbf{B}, \ \alpha = \alpha_0 e^{-m^2(r-r_0)^2/\delta r^2}$$

Baseline case:

- $\alpha_0 = 10^{-5} \Rightarrow \delta B_r / B = 10^{-4}$  at r/a = 0.14.
- 12 GAEs with n = 1 10, *m* is such that f = 400 600kHz.

## Characteristic frequencies

- $f_{GAE} \sim 400 600 kHz$ , may go higher.
- transit (passing) frequency  $f_{te} = \frac{1}{2\pi} \frac{v_{\parallel}}{qR} = 1.5 MHz T_e = 1 keV$ ,
- bounce (trapped) frequency  $f_{be} = \frac{1}{2\pi} \frac{v_{\perp}}{qR} \sqrt{\frac{r}{2R}} = 430 kHz$  at q = 2, R = 1m, a = 0.8m, r/a = 0.2.
- electron Coulomb scattering frequency  $\omega_{ce} = 0.7 \times 10^{11} sec^{-1}$ ,  $v_e/\omega_{ce} = 3 \times 10^{-7}$ , but e-i collisions may double this.
- thermal ion cyclotron frequency  $f_{ci} = 3MHz$ .

 $f_{GAE} \sim f_{be}$  and may be  $\sim f_{te}$ !!!

### Initial and final e-distributions



Initial ring distribution of electrons on one surface. ORBIT run for 3ms with Maxwellian electrons with  $T_e = 1keV$ .

#### Which electrons are interacting?



Evaluate characteristic displacement for different electrons  $T_e = 1 keV$ 

$$\left\langle \left| \psi^2 - \left\langle \psi \right\rangle^2 \right| \right\rangle,$$

in  $\lambda = \mu B_0 / E$ , *E* plane.

Trapped electrons as opposite to passing ones are mostly effected by GAEs  $\lambda \simeq 1$ . Weak passing electron interactions are due to  $\omega - k_{\parallel}v_{\parallel} = 0$  or  $\omega = k_{\parallel}\sigma_{\parallel}\sqrt{2E}\sqrt{1-\lambda}$ .

#### Electrons diffuse in radius w/out and with collisions

typical radial diffusion vs time



#### Radial dependence of electron diffusion



Peak of D(r) is near the mode amplitude peak.

Low-*m* modes contribute more to the diffusion.

Baseline radial point is at r/a = 0.14.

## *v<sub>e</sub>* dependence of electron diffusion



Baseline case  $\alpha = 10^{-5}$ ,  $v_e/\omega_{ce} = 3 \times 10^{-7}$ , and r/a = 0.14.

## GAE amplitude dependence of electron diffusion



Baseline case  $\alpha = 10^{-5}$ and  $v_e/\omega_{ce} = 3 \times 10^{-7}$ . Shown is diffusion at r/a = 0.14. *D* is higher at peak by  $\sim 4$ 

times.

Expected diffusion at resonance island overlap is  $D \sim \alpha$ .

 $\Rightarrow$  if  $D \sim \alpha^2$  then secondary islands generations/overlaps are expected.

## Summary

- GAEs with sufficiently strong amplitude can induce electron transport in NSTX.
- Electron transport is due to resonances of trapped electrons with GAEs at f = 400 600kHz.
- Phase space resonance overlapping is the mechanism of e-transport.
- Although for trapped electrons  $E_{\parallel}$  is not important it maybe important for passing electrons diffusion. ORBIT may not have exact cancellation of parallel electric field. This should be worked out in detail.

## frequency dependence of GAE driven e-diffusion



Evaluate characteristic displacement for different electrons  $T_e = 1 keV$ 

$$\left\langle \left| \psi^2 - \left\langle \psi \right\rangle^2 \right| \right\rangle,$$

in  $\lambda = \mu B_0 / E$ , *E* plane.

Trapped electrons as opposite to passing ones are mostly effected by GAEs  $\lambda \simeq 1$ . Weak passing electron interactions are due to  $\omega - k_{\parallel}v_{\parallel} = 0$  or  $\omega = k_{\parallel}\sigma_{\parallel}\sqrt{2E}\sqrt{1-\lambda}$ .