

Supported by

Comments on 2nd NIFS-CRC Symposium on **Plasma-Surface Interactions**

Office of

Science

York U

Chubu U

Fukui U

Hyogo U

Kyoto U

NIFS

Kyushu U

Niigata U

U Tokyo

Hebrew U

loffe Inst

TRINITI

KBSI

KAIST

ASIPP

POSTECH

IPP, Jülich

U Quebec

JAEA

PPPL lithium research well represented

- I. PPPL Presentations:
 - 1) J. Canik (ORNL) Effects of Lithium Coatings on ELM Stability in NSTX
 - 2) R. Kaita Experiments with Liquid Metal Walls: Status of the Lithium Tokamak Experiment
 - 3) H. Kugel Lithium Surface Coatings on NSTX Plasma Facing Components and its Effects on Plasma Performance
 - 4) D. Mansfield A Simple Apparatus for the Injection of Lithium Aerosol into the Scrape-off Layer of Fusion Research Devices
 - 5) M. Ono Possible Implications of NSTX Lithium Experimental Results on Magnetic Fusion Research
 - 6) C. Skinner Deuterium Retention with Lithium Conditioned Walls in NSTX [presented by H. Kugel]
 - 7) L. Zakharov Li Wall Fusion New Concept of Magnetic Fusion

2

Growing "maturity" of lithium researchers recognized by symposium organizers

Entire first day of three-day symposium devoted to lithium application to boundary control

- Hu "Liquid lithium limiter and coating experiments in HT-7"
 - Performance improvement observed
 - H recycling measured by H_{α} intensity reduced by a factor of 4
 - Carbon and oxygen impurities measured by CIII and OV spectroscopy decreased
 - Loop voltage had a slight decline
 - Core electron temperature slightly increased
 - Particle confinement time increased by a factor of 2
 - Energy confinement time increased from 25.86ms to 30.04ms
 - Not clear about surface conditions of liquid lithium limiter or operation independent of evaporation
 - No information about edge parameters (and possible efficacy of plasma operations for "cleaning" lithium surfaces)
 - Observed unipolar arcing and "droplet ejection" as seen with liquid lithium rail limiter on CDX-U

- Hirooka "A review of the boundary control effects on core plasma confinement and its implications to influence steadstate magnetic fusion experiments"
 - Suppression of PWI's by materials selection
 - Low-Z C with high-Z W: not attractive
 - Change edge parameters
 - "Old" TFTR (supershot) and "new" LHD (superdense core mode) both have reduced edge density for improved confinement
 - "Circular cause and consequence" reduce edge density to improve confinement which reduces density further and suppresses PWI's
 - Requires wall to be kept from saturation
 - » Conditioned PFC's means only pulsed operation
 - » Moving surface needed for CW operation
 - » Moving solid surface
 - » Continuous deposition and liquid convention
 - » Moving liquid surface

5

- Hirooka (continued)
 - Solid target coated with lithium
 - 10 rotations per second
 - Trapping efficiencies: H/Li about 1 and He/Li about 0.01 (could be physically trapped)
 - LiH diffusion in liquid Li rapidity due to Einstein-Stokes diffusion
 - CPD at Kyushu University
 - Li-gettered rotating poloidal limiter

6

- Tsuchiya "Development of lithium vapor injectors for boundary control"
 - Technical issue: how to put lithium on complex LHD divertor
 - Solution: inject Li vapor
 - Li transported to divertor along open field lines
 - Prototype made
 - Nozzle with 50 mm diameter
 - Heating to 650 degrees C
 - "Stick" heater (250V, 1000W)
 - Test results
 - Heater broke down at 567 degrees C
 - Beam profile made at 50 cm from nozzle end with thickness meter
 - Ejected lithium smaller than expected from simulation
 - » XPS indicated presence of significant lithium oxide quantity (only 1.2 percent lithium)
 - Lithium beam profile is wider than expected by 25%
 - » May be due to collisional effects

- Ashikawa "Surface chemical/binding reaction of coated Li layer by lithium vapor injectors in LIGHT-1"
 - Carbon impurities observed on surface only prior to application of plasma
 - Difference in lithium oxide between "uncoated" and "coated" lithium samples similar to observations by Allain
 - Hydrogen glow discharge cleaning (2 hours) of "coated" Li: qualitatively similar to "clean" Li but with
 - Shifted and broadened Li(1s) and O(1s) ("oxide") peaks provides measure of lithium oxide thickness
 - Decreases going from argon glow for wall conditioning to hydrogen glow to argon plasma

- Chung "Distribution of lithium neutrals and ions in hydrogen and helium background"
 - Injected lithium treated as neutrals
 - Collisionless model: depends on "disk" of radius "z" (criterion for flux conservation)
 - "Semi-collisionless" model: requires "source" to be physically reasonable (sink is formation of lithium hydride)
 - Work in progress: assume cylindrical approximation for large aspect ratio and axisymmetric source
 - Classical diffusion assumed for neutrals and ions in un-magnetized and magnetized plasmas
 - Focus of simulations to date qualitatively matches trends in data and Monte-Carlo calculations
 - Anomalous diffusion broadens profiles

- Shoji "Fluctuations of intrinsic magnetic field line structures on lithium ion transport in the LHD plasma periphery"
 - Closed Helical Divertor (CHD) for LHD
 - Ergodic layer formed around main plasma confinement region
 - Curved structure of divertor legs toward vacuum vessel
 - Highly ergodized divertor legs in inboard side of torus
 - Local Island Divertor (LID)
 - m=1 magnetic island formed in plasma periphery
 - · Leads to excessive local heating on LID "head"
 - CHD
 - Baffle plates and additional vacuum pumps added to divertor region

- Shoji (continued)
 - Density profile of impurity (Li) atoms
 - Assumed to originate from physical sputtering
 - Appears not to be problem even with liquid Li (sputtering two orders of magnitude higher relative to solid)
 - Li "swept away" to divertor region
 - Li transport in divertor legs calculated
 - Li does not flow to plasma core because of dominance of "friction force" over thermal force
 - Implies "practicality" of effectively coating divertor plates with Li (vapor injection method as possibility)

Second day included PSI in steady-state devices and additional talks on Li application to boundary control

- Tabarés "Overview of TJ-II performance under lithiated wall conditions"
 - Need for lithium in stellarators
 - Neoclassical transport tends to cause impurity accumulation
 - Low recycling and low Z_{eff} needed
 - TJ-II PFC's
 - Two graphite limiters
 - First-wall boronization
 - TJ-II "lithization" results
 - Lowered recycling (10% for H and 82% for He)
 - Development of peaked profiles
 - Particle confinement time of 7 ms observed after end of gas puffing in ECRH plasmas
 - Longer with NBI but recycling still low
 - Particle confinement time measured with gas pulse introduced during NBI phase

- Tabarés (continued)
 - "Bell" and "dome" profiles occur under same "lithization" conditions
 - "Bell"
 - Non-collapsing
 - Higher temperature and lower density
 - "Dome"
 - Collapsing
 - Higher density and lower temperature
 - Boronization tried on top of lithium
 - Reduced recycling still observed (10% for H)

• Taffala – "Wall conditioning strategies in the stellarator TJ-II"

- Wall conditioning (1998-2001)
 - Stainless steel walls
 - He GDC overnight between operational days
 - Removes H accumulated in walls
 - Reduces residual water
 - Affects density control due to He from walls
 - » Mitigated by Ar GDC for 30 minutes after He GDC
- Boronization started in 2001
 - Low-Z conditions needed for plasmas with NBI
 - Carborane vapor in He GDC
 - Followed by 30 minutes of He GDC to remove H trapped in film
 - Particle balance is problem
 - Saturation of H content means loss of density control
 - Requires He GDC after about twenty shots

- Taffala (continued)
 - Lithization
 - Plasma redistributes lithium from four symmetrically-located ovens (6 g capacity each) operated at 600 degrees C
 - Getters oxygen and water (effect lasts longer than with boron coatings)
 - Boronization improves "longevity" of lithium coating
 - "Full" wall coverage achieved with boronization occurring during glow discharge
 - Reduces oxygen available to interact with lithium subsequently evaporated onto vacuum vessel walls

Mazzitelli – "Review of FTU results with liquid lithium limiter"

- Peaked electron densities achieved
 - Narrower than in pellet case because of lithium edge pumping
 - Exceeds Greenwald limit by 30% but at 7.2 T magnetic field
 - Record value for gas puffing
 - Confinement time threshold raised from 50 ms to 70 ms at 0.5 MA
- ECRH + LH discharges
 - P(ECH) = 0.8 MW and P(LH) = 0.75 MW with Li creates "strong and wide" ITB in plasmas with electron temperatures higher than discharges with around 50% more RF power
 - Reason appears to be related to impurities (lower Z(eff) with Li no impurity lines)
 - » Means LH is more effective
 - » Z(eff) of about 2 means 50% dilution (strong reduction in neutron signal) but becomes negligible at high density

- Edge modification permits LH operation at "ITER-relevant" densities

- Tudisco "Peaked density profiles and MHD activity on FTU in lithium dominated discharges"
 - Hardware description
 - Scanning interferometer used to obtain density data
 - Stainless steel "liner" and toroidal molybdenum limiter
 - Density scanned at different currents and fields
 - Density peaking achieved in 6T, 0.5 MA discharges when "MARFE's" start being seen on interferometer
 - "Onset" appears later at 7T
 - Temperature "shrinks" before density rises
 - Profiles of line-averaged density indicate internal transport barrier
 - Peaking decreases with collisionality without MARFE's while opposite trend appears with MARFE's
 - MHD activity reduction
 - "Mild" effect most likely due to change in plasma resistivity

- Murakami "Atomic and molecular processes with lithium in peripheral plasmas"
 - First investigated for modeling early universe
 - Rate depends on temperature (linear and inverse exponential)
 - Based on atomic data below 1 eV but may still be generally valid
 - Reaction "network" considered
 - Charge states of elemental lithium and lithium hydride
 - Includes collisional effects, recombination, radiative attachment of electrons, charge transfer, mutual neutralization, radiative association, dissociative recombination, and exchange processes but data are limited
 - Calculations for peripheral region of plasma
 - $dn(i)/dt = \Sigma W(i,j)n(j)$ matrix elements are rate coefficients
 - Test case one zone model without sink or source terms in rate equations
 - Shows reasonable trend with number density decreasing as every other species increases with time

- Kato "Linear polarization of photon emissions from reflected neutrals of atomic hydrogen at metal PFC's"
 - Accurate determination of recycling coefficient requires means of identifying photon emission due to reflected hydrogen neutrals
 - Model under development that takes into account large electron source in conduction band of metal PFC's
 - Includes shifted Fermi level by proton motion
 - Leads to "Doppler shift" that allows resonance above "static" Fermi level
 - Results suggest that photon emission from surface electron capture should have finite polarization

Final day included more talks on Li application to boundary control and recommendations for future research

- Mirnov "Experiments at the T-11M device in support of the tokamak concept with closed Li cycle"
 - New DT-fusion paradigm fusion for fission
 - Pure fusion development time scale too long
 - Cost of uranium expected to increase rapidly
 - Radiation danger of "minor actinides" must be mitigated
 - Can be achieved at fusion power levels five times lower than on ITER
 - Avoid use of tungsten because of problems with long-term exposure to high radiation – consider Cu-Li alloys
 - "Emitter-collector" tokamak liquid metal limiter
 - Lithium evaporated from CPS goes to collector
 - Russian test facilities
 - Concept tested on T-11M with evaporation from "center" and collection at "edges" of CPM
 - "Circulation" provided by capillary structure that leads to motion of liquid lithium
 - Propose hydrogen operation on T-15 for next "zero-power" step

- Lyublinski "Experience and technical issues of liquid lithium application as PFM in tokamaks"
 - Metal-fiber (as opposed to sintered) materials most preferable
 - Stainless steel (like CDX-U L3) and refractory metals and alloys
 - CFC fiber and SiC not compatible with liquid lithium
 - Stationary heat flux tests performed with e-beam at Kurchatov (SPRUT-4)
 - 8 keV, 15 cm², 1 50 MW/m²
 - No damage in contrast with solid target or mesh sample without lithium at same exposure level
 - Shielding layer formed in 5 ms near Li CPS
 - Tests on tokamaks revealed same dependence on CPS "protection" with Li
 - "Splashing" suppressed with CPS

- Lyublinski (continued)
 - New Li limiter w/active cooling under development
 - Needed for 10 MW/m^2 for 5 s operation on FTU
 - KTM project at Kurchatov City in East Kazakhstan
 - 10 MW/m² for 5 s operation
 - New flexible W "mesh"
 - Na-K alloy for cooling

Technical issues and recommendations for future research (beyond ITER)

- Materials compatibility problem (corrosion, etc.)
 - Compatibility with Cu (gaskets) at high temperatures?
 - Li purity effects (O, C, N, Be,...) on corrosion?
 - Neutron effects on chemical compatibilities?
 - Data need for compatibility with ceramics (Al₂O₃)?
 - Compatibility with Zeolite on cryopanel?
 - Compatibility with mechanical pump lubricants?
 - Consider inviting participants from blanket technology, IFMIF, etc. communities to next workshop
- Tritium retention (site-dependent)
 - Retention in Li-deposits at low temperature (first wall)?
 - Thermal desorption data from Li-deposits?
 - Impurity effects (C, O, Be, He bubbles, etc.)?
 - Circulation PFC system concepts

- EM force
 - Electromagnetic force on liquid lithium flow in the system?
 - Need data on TEM force
 - Consider inviting participants from blanket, tritium, etc. communities to next workshop
- Air exposure
 - Air exposure to liquid lithium flow
 - Accidental water leak to liquid lithium flow
 - ES&H database

Future workshop locations proposed and symposium presentations posted

- Proposal "interleave" future Li workshops with PSI conferences
 - 2011 NIFS
 - 2013 Frascati
 - 2015 Madrid
 - 2017 Princeton
 - 2019 Moscow
- Website for viewing presentations
 - <u>http://dpsalvia.nifs.ac.jp/~hirooka/2nd-NIFS-CRC-Symposium/</u>

